This paper considers coding for so-called partially stuck memory cells. Such memory cells can only store partial information as some of their levels cannot be used due to, e.g., wear out. First, we present a new code construction for masking such partially stuck cells while additionally correcting errors. This construction (for cells with $q >2$ levels) is achieved by generalizing an existing masking-only construction in [1] (based on binary codes) to correct errors as well. Compared to previous constructions in [2], our new construction achieves larger rates for many sets of parameters. Second, we derive a sphere-packing (any number of $u$ partially stuck cells) and a Gilbert-Varshamov bound ($u<q$ partially stuck cells) for codes that can mask a certain number of partially stuck cells and correct errors additionally. A numerical comparison between the new bounds and our previous construction of PSMCs for the case $u<q$ in [2] shows that our construction lies above the Gilbert-Varshamov-like bound for several code parameters.


翻译:本文考虑对所谓的部分卡住的内存单元格进行编码。 这些内存单元格只能存储部分信息, 因为有些水平无法使用, 例如由于损耗等原因。 首先, 我们为遮盖部分卡住的单元格提出一个新的代码结构, 同时补充更正错误。 这种构造( $q > 2美元的单元格) 是通过在 [ 1 (基于二进制代码) 中将现有的只用掩蔽的建筑( 根据二进制代码) 概括化来纠正错误来实现的。 与 [ 2] 中以往的构造相比, 我们的新建筑在许多参数组中实现了更高的费率。 其次, 我们为能够遮盖部分卡住的细胞制作一个域包( $ 部分卡住的单元格), 以及一个 Gilbert- Varshamov 捆绑的代码( u < q$ 部分卡住的单元格), 这些代码可以遮盖一定数量的部分卡住的细胞, 并另外纠正错误 。 在新界限和我们以前为案件建造的 PSMC $ < q$ 2 之间的数字比较表明, 我们的建筑比 Gilbert- Varhamov 类似的固定的代码参数要多。

0
下载
关闭预览

相关内容

【干货书】分数图论:对图论的一种理性的探讨,167页pdf
专知会员服务
25+阅读 · 2021年4月13日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
必须收藏!MIT-Gilbert老爷子《矩阵图解》,一张图看透矩阵
【Cell 2020】神经网络中的持续学习
专知会员服务
59+阅读 · 2020年11月7日
知识图谱推理,50页ppt,Salesforce首席科学家Richard Socher
专知会员服务
105+阅读 · 2020年6月10日
抢鲜看!13篇CVPR2020论文链接/开源代码/解读
专知会员服务
49+阅读 · 2020年2月26日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Ray RLlib: Scalable 降龙十八掌
CreateAMind
9+阅读 · 2018年12月28日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年5月10日
Arxiv
0+阅读 · 2021年5月6日
Memory-Gated Recurrent Networks
Arxiv
12+阅读 · 2020年12月24日
VIP会员
相关VIP内容
【干货书】分数图论:对图论的一种理性的探讨,167页pdf
专知会员服务
25+阅读 · 2021年4月13日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
必须收藏!MIT-Gilbert老爷子《矩阵图解》,一张图看透矩阵
【Cell 2020】神经网络中的持续学习
专知会员服务
59+阅读 · 2020年11月7日
知识图谱推理,50页ppt,Salesforce首席科学家Richard Socher
专知会员服务
105+阅读 · 2020年6月10日
抢鲜看!13篇CVPR2020论文链接/开源代码/解读
专知会员服务
49+阅读 · 2020年2月26日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Ray RLlib: Scalable 降龙十八掌
CreateAMind
9+阅读 · 2018年12月28日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员