We study time/memory tradeoffs of function inversion: an algorithm, i.e., an inverter, equipped with an s-bit advice on a randomly chosen function $f : [n] -> [n]$ and using $q$ oracle queries to $f$, tries to invert a randomly chosen output $y$ of $f$, i.e., to find $x\in f^{-1}(y)$. Much progress was done regarding adaptive function inversion - the inverter is allowed to make adaptive oracle queries. Hellman [IEEE transactions on Information Theory 80] presented an adaptive inverter that inverts with high probability a random $f$. Fiat and Naor [SICOMP 00] proved that for any $s$, $q$ with $s^3q = n$ (ignoring low-order terms), an $s$-advice, $q$-query variant of Hellmans algorithm inverts a constant fraction of the image points of any function. Yao [STOC 90] proved a lower bound of $sq \geq n$ for this problem. Closing the gap between the above lower and upper bounds is a long-standing open question. Very little is known for the non-adaptive variant of the question. The only known upper bounds, i.e., inverters, are the trivial ones (with $s+q = n$), and the only lower bound is the above bound of Yao. In a recent work, Corrigan-Gibbs and Kogan [TCC 19] partially justified the difficulty of finding lower bounds on non-adaptive inverters, showing that a lower bound on the time/memory tradeoff of non-adaptive inverters implies a lower bound on low-depth Boolean circuits. Bounds that, for a strong enough choice of parameters, are notoriously hard to prove. We make progress on the above intriguing question, both for the adaptive and the non-adaptive case, proving the following lower bounds on restricted families of inverters.


翻译:我们研究函数反转的时间/ 模拟取舍: 一种算法, 即一个反转器, 配有随机选择函数的 sbit 忠告 $f : [n] - > [n] 美元, 并使用 q$ 或acle 查询 $f$, 试图将随机选择的产值 $y 美元, 也就是说, 找到 $x\ in f ⁇ -1} (y) 。 在适应函数反转方面已经取得了很大进展 - 允许对调和调试查询。 Hellman [IEEE 上的信息理论 80] 展示了一个适应性反调器, 高概率的反调为 $f$。 Fiat 和 Naor [SI COMP 00] 证明, 任何美元中, $q 美元为美元( 表示低级交易条件), 美元为 上值, 低值的变数为 。 在任何函数中, 低调的变数中, 低调的变数为 。 在变数中, 最低变数为 变数为 。 变数为 变数为 。 变数为 。 变数中, 变数为 变数为 变数为 。

0
下载
关闭预览

相关内容

【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
【2020新书】概率机器学习,附212页pdf与slides
专知会员服务
108+阅读 · 2020年11月12日
【Google】平滑对抗训练,Smooth Adversarial Training
专知会员服务
48+阅读 · 2020年7月4日
专知会员服务
161+阅读 · 2020年1月16日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
52+阅读 · 2019年9月29日
CCF推荐 | 国际会议信息6条
Call4Papers
9+阅读 · 2019年8月13日
CCF推荐 | 国际会议信息8条
Call4Papers
9+阅读 · 2019年5月23日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
19篇ICML2019论文摘录选读!
专知
28+阅读 · 2019年4月28日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
0+阅读 · 2021年6月24日
Arxiv
0+阅读 · 2021年6月22日
VIP会员
相关VIP内容
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
【2020新书】概率机器学习,附212页pdf与slides
专知会员服务
108+阅读 · 2020年11月12日
【Google】平滑对抗训练,Smooth Adversarial Training
专知会员服务
48+阅读 · 2020年7月4日
专知会员服务
161+阅读 · 2020年1月16日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
52+阅读 · 2019年9月29日
相关资讯
CCF推荐 | 国际会议信息6条
Call4Papers
9+阅读 · 2019年8月13日
CCF推荐 | 国际会议信息8条
Call4Papers
9+阅读 · 2019年5月23日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
19篇ICML2019论文摘录选读!
专知
28+阅读 · 2019年4月28日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员