We introduce the problem of constructing explicit variety evasive subspace families. Given a family $\mathcal{F}$ of subvarieties of a projective or affine space, a collection $\mathcal{H}$ of projective or affine $k$-subspaces is $(\mathcal{F},\epsilon)$-evasive if for every $\mathcal{V}\in\mathcal{F}$, all but at most $\epsilon$-fraction of $W\in\mathcal{H}$ intersect every irreducible component of $\mathcal{V}$ with (at most) the expected dimension. The problem of constructing such an explicit subspace family generalizes both deterministic black-box polynomial identity testing (PIT) and the problem of constructing explicit (weak) lossless rank condensers. Using Chow forms, we construct explicit $k$-subspace families of polynomial size that are evasive for all varieties of bounded degree in a projective or affine $n$-space. As one application, we obtain a complete derandomization of Noether's normalization lemma for varieties of bounded degree in a projective or affine $n$-space. In another application, we obtain a simple polynomial-time black-box PIT algorithm for depth-4 arithmetic circuits with bounded top fan-in and bottom fan-in that are not in the Sylvester-Gallai configuration, improving and simplifying a result of Gupta (ECCC TR 14-130). As a complement of our explicit construction, we prove a lower bound for the size of $k$-subspace families that are evasive for degree-$d$ varieties in a projective $n$-space. When $n-k=\Omega(n)$, the lower bound is superpolynomial unless $d$ is bounded. The proof uses a dimension-counting argument on Chow varieties that parametrize projective subvarieties.


翻译:我们引入了构建清晰的蒸发子空间家庭的问题。 如果每对$(mathcal{Vin\ mathcal}F}美元)来说,只要是家庭($\mathcal{F}$F}美元),一个投影空间或折价美元子空间的集合$\mathcal{H}美元(美元),那么,如果每对一个美元(mathcal{Vín\ mathcal{F}}F}美元)来说,只要是家庭($@ephrcal{F}$(美元),那么,如果是一个家庭(美元),一个家庭(美元),一个家庭(美元),一个家庭(美元),一个家庭(美元),一个家庭(美元),一个家庭(美元),一个家庭(美元),一个组织(美元),一个组织(美元),一个组织(美元),一个组织(美元),一个组织(美元),一个组织(美元),一个组织(美元),一个组织(美元),一个固定的基金(美元),一个工程,一个固定,一个项目,一个不进行一个游戏,一个游戏,一个固定,一个项目,一个(美元),一个游戏,一个不固定,一个项目,一个项目,一个(美元,一个固定),一个固定),一个项目,一个项目,一个(美元),一个组织,一个不固定,一个项目,一个(美元),一个不固定,一个项目,一个项目,一个(美元),一个。

0
下载
关闭预览

相关内容

【Google】梯度下降,48页ppt
专知会员服务
81+阅读 · 2020年12月5日
【干货书】机器学习速查手册,135页pdf
专知会员服务
126+阅读 · 2020年11月20日
【DeepMind】强化学习教程,83页ppt
专知会员服务
154+阅读 · 2020年8月7日
迁移学习简明教程,11页ppt
专知会员服务
108+阅读 · 2020年8月4日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
111+阅读 · 2020年5月15日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
已删除
将门创投
3+阅读 · 2019年9月4日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
0+阅读 · 2021年7月2日
Arxiv
0+阅读 · 2021年7月1日
Arxiv
0+阅读 · 2021年7月1日
Arxiv
0+阅读 · 2021年7月1日
VIP会员
相关VIP内容
【Google】梯度下降,48页ppt
专知会员服务
81+阅读 · 2020年12月5日
【干货书】机器学习速查手册,135页pdf
专知会员服务
126+阅读 · 2020年11月20日
【DeepMind】强化学习教程,83页ppt
专知会员服务
154+阅读 · 2020年8月7日
迁移学习简明教程,11页ppt
专知会员服务
108+阅读 · 2020年8月4日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
111+阅读 · 2020年5月15日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
相关资讯
已删除
将门创投
3+阅读 · 2019年9月4日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员