We show that the number of rational points of a subgroup inside a toric variety over a finite field defined by a homogeneous lattice ideal can be computed via Smith normal form of the matrix whose columns constitute a basis of the lattice. This generalizes and yields a concise toric geometric proof of the same fact proven purely algebraically by Lopez and Villarreal for the case of a projective space and a standard homogeneous lattice ideal of dimension one. We also prove a Nullstellensatz type theorem over a finite field establishing a one to one correspondence between subgroups of the dense split torus and certain homogeneous lattice ideals. As application, we compute the main parameters of generalized toric codes on subgroups of the torus of Hirzebruch surfaces, generalizing the existing literature.
翻译:我们显示,在由同质拉蒂丝理想定义的有限字段中,一个亚组在一端中的合理点数可以通过其柱子构成拉蒂丝基础的矩阵Smith 正常形式计算。这概括并得出了洛佩兹和比利亚里耶尔为投影空间和一面标准同质拉蒂丝理想所证明的同一事实的简明的极分几何证据。我们还证明,Nullstelennsatz在一端中输入一个自定字段,在稠密的断裂面和某些同质拉蒂斯理想的分组之间建立起一对一的对应。作为应用,我们计算了Hirzebruch表面小类中通用比目码的主要参数,概括了现有的文献。