Given an undirected unweighted graph $G = (V, E)$ on $n$ vertices and $m$ edges, a subgraph $H\subseteq G$ is a spanner of $G$ with stretch function $f: \mathbb{R}_+ \rightarrow \mathbb{R}_+$, iff for every pair $s, t$ of vertices in $V$, $\textsf{dist}_{H}(s, t)\le f(\textsf{dist}_{G}(s, t))$. When $f(d) = d + o(d)$, $H$ is called a sublinear additive spanner; when $f(d) = d + o(n)$, $H$ is called an additive spanner, and $f(d) - d$ is usually called the additive stretch of $H$. As our primary result, we show that for any constant $\delta>0$ and constant integer $k\geq 2$, every graph on $n$ vertices has a sublinear additive spanner with stretch function $f(d)=d+O(d^{1-1/k})$ and $O\big(n^{1+\frac{1+\delta}{2^{k+1}-1}}\big)$ edges. When $k = 2$, this improves upon the previous spanner construction with stretch function $f(d) = d + O(d^{1/2})$ and $\tilde{O}(n^{1+3/17})$ edges [Chechik, 2013]; for any constant integer $k\geq 3$, this improves upon the previous spanner construction with stretch function $f(d) = d + O(d^{1-1/k})$ and $O\bigg(n^{1+\frac{(3/4)^{k-2}}{7 - 2\cdot (3/4)^{k-2}}}\bigg)$ edges [Pettie, 2009]. Most importantly, the size of our spanners almost matches the lower bound of $\Omega\big(n^{1+\frac{1}{2^{k+1}-1}}\big)$ [Abboud, Bodwin, Pettie, 2017]. As our second result, we show a new construction of additive spanners with stretch $O(n^{0.403})$ and $O(n)$ edges, which slightly improves upon the previous stretch bound of $O(n^{3/7+\epsilon})$ achieved by linear-size spanners [Bodwin and Vassilevska Williams, 2016]. An additional advantage of our spanner is that it admits a subquadratic construction runtime of $\tilde{O}(m + n^{13/7})$, while the previous construction in [Bodwin and Vassilevska Williams, 2016] requires all-pairs shortest paths computation which takes $O(\min\{mn, n^{2.373}\})$ time.
翻译:给定一个具有 $n$ 个顶点和 $m$ 条边的无向无权图 $G=(V,E)$,如果一个子图 $H\subseteq G$ 满足对于所有顶点 $s,t\in V$,满足 $\textsf{dist}_H(s,t)\le f(\textsf{dist}_G(s,t))$,则称 $H$ 为 $G$ 的拉伸函数为 $f: \mathbb{R}_+ \rightarrow \mathbb{R}_+$ 的生成树。当 $f(d) = d + o(d)$ 时,称 $H$ 为 次线性加性生成树;当 $f(d) = d + o(n)$ 时,称 $H$ 为加性生成树,此时 $f(d)-d$ 通常被称为 $H$ 的加性拉伸。本文的主要结果是:对于任意常数 $\delta>0$ 和常数整数 $k\geq 2$,每个图都有一个次线性加性生成树,其拉伸函数为 $f(d)=d+O(d^{1-1/k})$,边数为 $O(n^{1+\frac{1+\delta}{2^{k+1}-1}})$。当 $k=2$ 时,与之前拉伸函数为 $f(d) = d + O(d^{1/2})$,边数为 $\tilde{O}(n^{1+3/17})$ 的生成树构造结果相比,本文结果有所提高 [Chechik, 2013];对于任意常数整数 $k\geq 3$,与之前拉伸函数为 $f(d) = d + O(d^{1-1/k})$,边数为 $O\bigg(n^{1+\frac{(3/4)^{k-2}}{7 - 2\cdot (3/4)^{k-2}}}\bigg)$ 的生成树构造结果相比,本文结果也有所提高 [Pettie, 2009]。最重要的是,本文生成树大小几乎与 $\Omega\big(n^{1+\frac{1}{2^{k+1}-1}}\big)$ 的下界相匹配 [Abboud, Bodwin, Pettie, 2017]。本文的第二个结果是,我们展示了一种新的加性生成树构造方法,其拉伸为 $O(n^{0.403})$,边数为 $O(n)$,略好于线性大小的生成树之前实现的拉伸界为 $O(n^{3/7+\epsilon})$ [Bodwin and Vassilevska Williams, 2016]。我们生成树的另一个优点是其可以实现亚二次级别的构造时间为 $\tilde{O}(m + n^{13/7})$,而之前[Bodwin and Vassilevska Williams, 2016]的构造需要全对最短路径计算,其时间为 $O(\min\{mn, n^{2.373}\})$。