The immersed finite element-finite difference (IFED) method is a computational approach to modeling interactions between a fluid and an immersed structure. This method uses a finite element (FE) method to approximate the stresses and forces on a structural mesh and a finite difference (FD) method to approximate the momentum of the entire fluid-structure system on a Cartesian grid. The fundamental approach used by this method follows the immersed boundary framework for modeling fluid-structure interaction (FSI), in which a force spreading operator prolongs structural forces to a Cartesian grid, and a velocity interpolation operator restricts a velocity field defined on that grid back onto the structural mesh. Force spreading and velocity interpolation both require projecting data onto the finite element space. Consequently, evaluating either coupling operator requires solving a matrix equation at every time step. Mass lumping, in which the projection matrices are replaced by diagonal approximations, has the potential to accelerate this method considerably. Constructing the coupling operators also requires determining the locations on the structure mesh where the forces and velocities are sampled. Here we show that sampling the forces and velocities at the nodes of the structural mesh is equivalent to using lumped mass matrices in the coupling operators. A key theoretical result of our analysis is that if both of these approaches are used together, the IFED method permits the use of lumped mass matrices derived from nodal quadrature rules for any standard interpolatory element. This is different from standard FE methods, which require specialized treatments to accommodate mass lumping with higher-order shape functions. Our theoretical results are confirmed by numerical benchmarks, including standard solid mechanics tests and examination of a dynamic model of a bioprosthetic heart valve.


翻译:隐化的定点元素- 最小值差异 (IFED) 方法是一种计算方法,用于模拟流体和沉淀结构之间的相互作用。这种方法使用一种限值元素(FE) 方法,以在结构网格和定点差异(FD) 上估计压力和力,以估计整个流体- 结构系统在笛卡尔语网格上的势头。这种方法使用的基本方法遵循的是用于模拟流体- 结构互动(FSI) 的沉浸边界框架(FSI), 即一个分流操作器将结构结构力延长结构力到卡斯特尔电网, 以及一个速度内插管操作器将电网上定义的速位限制到结构网格中的结构网格。 武力的传播和速度间插法都需要将数据投射到有限的元素空间上。 因此, 评估任何组合操作者都需要每一步解决一个矩阵的矩阵等式矩阵。 大规模拼凑,其中的预测矩阵有可能大大地加速这一方法。 构造操作者也要求确定结构结构图上的位置, 其中的动力和天线流体- 天体- 的精度- 的精度- 等值是这个结构- 等值- 的阶- 结构- 模型的计算中, 我们的计算中, 的计算中所使用的的算法的阶值的阶值的计算法的计算中, 的阶值的计算中, 的阶值的计算法的计算结果是用来用来将使用这个结构- 。

0
下载
关闭预览

相关内容

MASS:IEEE International Conference on Mobile Ad-hoc and Sensor Systems。 Explanation:移动Ad hoc和传感器系统IEEE国际会议。 Publisher:IEEE。 SIT: http://dblp.uni-trier.de/db/conf/mass/index.html
【硬核书】矩阵代数基础,248页pdf
专知会员服务
84+阅读 · 2021年12月9日
专知会员服务
39+阅读 · 2021年7月4日
【DeepMind】强化学习教程,83页ppt
专知会员服务
152+阅读 · 2020年8月7日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
109+阅读 · 2020年5月15日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
计算机 | CCF推荐期刊专刊信息5条
Call4Papers
3+阅读 · 2019年4月10日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
【干货】2019年国际学术会议资讯 (含截稿日期)
中国自动化学会
9+阅读 · 2018年11月5日
计算机类 | SIGMETRICS 2019等国际会议信息7条
Call4Papers
9+阅读 · 2018年10月23日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2022年1月24日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
计算机 | CCF推荐期刊专刊信息5条
Call4Papers
3+阅读 · 2019年4月10日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
【干货】2019年国际学术会议资讯 (含截稿日期)
中国自动化学会
9+阅读 · 2018年11月5日
计算机类 | SIGMETRICS 2019等国际会议信息7条
Call4Papers
9+阅读 · 2018年10月23日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员