Like many other biological processes, calcium dynamics in neurons containing an endoplasmic reticulum are governed by diffusion-reaction equations on interface-separated domains. Interface conditions are typically described by systems of ordinary differential equations that provide fluxes across the interfaces. Using the calcium model as an example of this class of ODE-flux boundary interface problems, we prove the existence, uniqueness and boundedness of the solution by applying comparison theorem, fundamental solution of the parabolic operator and a strategy used in Picard's existence theorem. Then we propose and analyze an efficient implicit-explicit finite element scheme which is implicit for the parabolic operator and explicit for the nonlinear terms. We show that the stability does not depend on the spatial mesh size. Also the optimal convergence rate in $H^1$ norm is obtained. Numerical experiments illustrate the theoretical results.
翻译:与许多其他生物过程一样,含有内分层内分解内分泌体的神经元中的钙动态受界面分离域中的扩散-反应方程式的制约。界面条件通常被提供跨界面通量的普通差异方程式系统描述。使用钙模型作为这种ODE-flex边界界面问题类别的例子,我们通过比较理论、抛物线操作员的基本解决办法和Picard的存在理论中使用的战略来证明解决方案的存在、独特性和相互交错性。然后我们提出和分析一种有效的隐含的隐含有限要素方案,这个方案对抛物线操作员是隐含的,对非线性术语是明确的。我们表明,稳定性并不取决于空间网状大小。我们还获得了$H1美元标准的最佳趋同率。数字实验说明了理论结果。