Physically-inspired latent force models offer an interpretable alternative to purely data driven tools for inference in dynamical systems. They carry the structure of differential equations and the flexibility of Gaussian processes, yielding interpretable parameters and dynamics-imposed latent functions. However, the existing inference techniques associated with these models rely on the exact computation of posterior kernel terms which are seldom available in analytical form. Most applications relevant to practitioners, such as Hill equations or diffusion equations, are hence intractable. In this paper, we overcome these computational problems by proposing a variational solution to a general class of non-linear and parabolic partial differential equation latent force models. Further, we show that a neural operator approach can scale our model to thousands of instances, enabling fast, distributed computation. We demonstrate the efficacy and flexibility of our framework by achieving competitive performance on several tasks where the kernels are of varying degrees of tractability.
翻译:物理激发的潜伏力模型为动态系统中纯粹数据驱动的推断工具提供了一种可解释的替代工具,它们包含不同方程结构和高斯进程的灵活性,产生可解释的参数和动态带来的潜在功能;然而,与这些模型相关的现有推论技术依赖于精确计算后方内核术语,而这些术语很少以分析形式提供;因此,大多数与从业人员有关的应用,如希尔方程或扩散方程,都是难以解决的。在本文件中,我们通过为非线性和parblic部分差异方程潜伏力模型的普通类别提出变式解决方案,克服了这些计算问题。此外,我们表明神经操作器方法可以把我们的模型缩放成数千个实例,能够快速、分散地计算。我们通过在内核具有不同程度可伸缩性的若干任务上实现竞争性的绩效,展示了我们框架的功效和灵活性。