Automated Program Repair (APR) aims to automatically fix bugs in the source code. Recently, as advances in Deep Learning (DL) field, there is a rise of Neural Program Repair (NPR) studies, which formulate APR as a translation task from buggy code to correct code and adopt neural networks based on encoder-decoder architecture. Compared with other APR techniques, NPR approaches have a great advantage in applicability because they do not need any specification (i.e., a test suite). Although NPR has been a hot research direction, there isn't any overview on this field yet. In order to help interested readers understand architectures, challenges and corresponding solutions of existing NPR systems, we conduct a literature review on latest studies in this paper. We begin with introducing the background knowledge on this field. Next, to be understandable, we decompose the NPR procedure into a series of modules and explicate various design choices on each module. Furthermore, we identify several challenges and discuss the effect of existing solutions. Finally, we conclude and provide some promising directions for future research.
翻译:自动程序修理(APR) 旨在自动修正源代码中的错误。 最近,随着深学习(DL)领域的进展,神经程序修复(NPR)研究的兴起,将RARA编成由错误代码翻译的任务,以校正代码和采用基于编码脱代器结构的神经网络。与其他RAW技术相比,NPR方法在应用上有很大优势,因为它们不需要任何规格(即测试套件) 。虽然NPR是一个热门的研究方向,但还没有这方面的任何概览。为了帮助感兴趣的读者了解现有NPR系统的结构、挑战和相应的解决方案,我们对本文中的最新研究进行文献审查。我们首先介绍这个领域的背景知识。接下来,我们可以理解,我们将NPR程序分解成一系列模块,对每个模块做出各种解释性的设计选择。此外,我们找出了几个挑战,并讨论了现有解决方案的效果。最后,我们为未来研究提供了一些有希望的方向。