Consider two entities with constant but not necessarily equal velocities, moving on two given piece-wise linear trajectories inside a simple polygon $P$. The Trajectory Range Visibility problem deals with determining the sub-trajectories on which two entities become visible to each other. A more straightforward decision version of this problem is called Trajectory Visibility, where the trajectories are line segments. The decision version specifies whether the entities can see one another. This version was studied by P. Eades et al. in 2020, where they supposed given constant velocities for the entities. However, the approach presented in this paper supports non-constant complexity trajectories. Furthermore, we report every pair of constant velocities with which the entities can see each other. In particular, for every constant velocity of a moving entity, we specify: $(1)$ All visible parts of the other entity's trajectory. $(2)$ All possible constant velocities of the other entity to become visible. Regarding line-segment trajectories, we present $\mathcal{O}(n \log n)$ running time algorithm which obtains all pairs of sub-trajectories on which the moving entities become visible to one another, where $n$ is the complexity of $P$. Regarding the general case, we provide an algorithm with $\mathcal{O}(n \log n + m(\log m + \log n))$ running time, where $m$ indicates the complexity of both trajectories. We offer $\mathcal{O}(\log n)$ query time for line segment trajectories and $\mathcal{O}(\log m + k)$ for the non-constant complexity ones s.t. $k$ is the number of velocity ranges reported in the output. Interestingly, our results require only $\mathcal{O}(n + m)$ space for non-constant complexity trajectories.


翻译:考虑两个具有恒定但不一定相等速度的实体, 以两个给定的字符串线性轨迹在简单多边方$P$范围内移动。 但是, 轨距范围的可见性问题涉及确定两个实体彼此可见的亚轨迹。 这个问题的更直截了当的决定版本叫做Trajotory Visibility, 其中轨迹是线条段。 决定版本指定了两个实体是否能够看到另一个实体。 这个版本是由 P. Eades 等人在2020年研究的, 其中它们认为它们给实体以恒定的 ntro 美元速度。 然而, 本文中展示的方法支持不一致性的复杂轨迹。 此外, 我们报告每个实体可以相互看见的每对恒定轨速度, 特别是对于每个移动实体的恒定速度, $(1) 所有可见的部分。 $( P) 其它实体的所有恒定的轨迹都在 。 在行距 nqal 的轨迹轨迹上, 我们展示的是 $\ malyax 美元 的运行时间 。</s>

0
下载
关闭预览

相关内容

专知会员服务
76+阅读 · 2021年3月16日
专知会员服务
159+阅读 · 2020年1月16日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
量化金融强化学习论文集合
专知
13+阅读 · 2019年12月18日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
14+阅读 · 2022年10月15日
Arxiv
29+阅读 · 2021年11月2日
Arxiv
23+阅读 · 2021年3月4日
Interpretable CNNs for Object Classification
Arxiv
20+阅读 · 2020年3月12日
VIP会员
相关VIP内容
专知会员服务
76+阅读 · 2021年3月16日
专知会员服务
159+阅读 · 2020年1月16日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
相关资讯
量化金融强化学习论文集合
专知
13+阅读 · 2019年12月18日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
相关论文
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员