Convex quadratic programming (QP) is an important sub-field of mathematical optimization. The alternating direction method of multipliers (ADMM) is a successful method to solve QP. Even though ADMM shows promising results in solving various types of QP, its convergence speed is known to be highly dependent on the step-size parameter $\rho$. Due to the absence of a general rule for setting $\rho$, it is often tuned manually or heuristically. In this paper, we propose CA-ADMM (Context-aware Adaptive ADMM)) which learns to adaptively adjust $\rho$ to accelerate ADMM. CA-ADMM extracts the spatio-temporal context, which captures the dependency of the primal and dual variables of QP and their temporal evolution during the ADMM iterations. CA-ADMM chooses $\rho$ based on the extracted context. Through extensive numerical experiments, we validated that CA-ADMM effectively generalizes to unseen QP problems with different sizes and classes (i.e., having different QP parameter structures). Furthermore, we verified that CA-ADMM could dynamically adjust $\rho$ considering the stage of the optimization process to accelerate the convergence speed further.
翻译: convex 二次编程( QP) 是数学优化的一个重要子领域 。 倍数交替方向法( ADMM) 是解决QP的成功方法 。 尽管 ADMM 显示在解决各类QP方面取得有希望的结果, 其趋同速度众所周知高度依赖于分级参数 $\ rho 美元 。 由于缺乏设定 $\ rho美元的一般规则, 它经常是手工或超速调整的 。 在本文中, 我们提议 CA- ADMM ( Colt-aware ADMM ) 来学习适应性调整 $\ rho$ 以加速 ADMM 。 CA- ADMM 提取了 spotio- 时间环境环境, 它捕捉到 QP 的原始和双重变量的依赖性, 及其在 ADMM 的周期变化。 CA- ADMM 根据抽取的环境选择 $ 。 通过广泛的数字实验, 我们验证CA- ADMMM 有效地将不同大小和等级的无形QP 问题概括化为无形QP 。 此外, 我们考虑对AMAD 的加速化进程进行进一步的调整。