Methods based on ordinary differential equations (ODEs) are widely used to build generative models of time-series. In addition to high computational overhead due to explicitly computing hidden states recurrence, existing ODE-based models fall short in learning sequence data with sharp transitions - common in many real-world systems - due to numerical challenges during optimization. In this work, we propose LS4, a generative model for sequences with latent variables evolving according to a state space ODE to increase modeling capacity. Inspired by recent deep state space models (S4), we achieve speedups by leveraging a convolutional representation of LS4 which bypasses the explicit evaluation of hidden states. We show that LS4 significantly outperforms previous continuous-time generative models in terms of marginal distribution, classification, and prediction scores on real-world datasets in the Monash Forecasting Repository, and is capable of modeling highly stochastic data with sharp temporal transitions. LS4 sets state-of-the-art for continuous-time latent generative models, with significant improvement of mean squared error and tighter variational lower bounds on irregularly-sampled datasets, while also being x100 faster than other baselines on long sequences.
翻译:基于普通差异方程式(ODEs)的方法被广泛用于建立时间序列的基因模型。除了由于明确计算隐藏状态的重现而导致的高计算间接费用外,现有的基于ODE的模型在学习序列数据方面还远远落后于学习序列数据,由于许多现实世界系统中常见的急剧转变,因为优化过程中存在数字方面的挑战。在这项工作中,我们提出了LS4, 这是一种根据州空间代码变化的潜伏变量序列的基因模型,以提高模型的建模能力。在近期的深度空间模型(S4)的启发下,我们通过利用LS4的演进代表方式实现加速。LS4绕过对隐藏状态的明确评估。我们表明,LS4在边际分布、分类和预测Monash Sourning Repostory中真实世界数据集的分数方面,明显优于以前的连续时间基因模型,大大优于以往的边际分布、分类和预测,并且能够模拟高超时空转换速度的高度相位数据。LS4为连续潜在基因模型的状态,大大改进了平均的平方差和较较紧的更低的变幅,同时也在不规则的基线上其他100级的顺序上也处于不规则的基线。