This paper focuses on subject adaptation for EEG-based visual recognition. It aims at building a visual stimuli recognition system customized for the target subject whose EEG samples are limited, by transferring knowledge from abundant data of source subjects. Existing approaches consider the scenario that samples of source subjects are accessible during training. However, it is often infeasible and problematic to access personal biological data like EEG signals due to privacy issues. In this paper, we introduce a novel and practical problem setup, namely source-free subject adaptation, where the source subject data are unavailable and only the pre-trained model parameters are provided for subject adaptation. To tackle this challenging problem, we propose classifier-based data generation to simulate EEG samples from source subjects using classifier responses. Using the generated samples and target subject data, we perform subject-independent feature learning to exploit the common knowledge shared across different subjects. Notably, our framework is generalizable and can adopt any subject-independent learning method. In the experiments on the EEG-ImageNet40 benchmark, our model brings consistent improvements regardless of the choice of subject-independent learning. Also, our method shows promising performance, recording top-1 test accuracy of 74.6% under the 5-shot setting even without relying on source data. Our code can be found at https://github.com/DeepBCI/Deep-BCI/tree/master/1_Intelligent_BCI/Source_Free_Subject_Adaptation_for_EEG.
翻译:本文侧重于对基于EEG的视觉识别进行主题调整,目的是通过转让来自来源主题大量数据的知识,为EEG样本有限的目标对象建立专门定制的视觉刺激识别系统。现有方法考虑到在培训期间可以获得源主题样本的设想;然而,由于隐私问题,获取个人生物数据如EEG信号往往不可行和问题。在本文件中,我们引入了一个新颖而实际的问题设置,即无源主题适应,即没有源主题数据,只有为对象适应提供预先培训的示范参数。为了解决这一具有挑战性的问题,我们建议使用基于分类的回复,从源主题中模拟EEG样本生成基于分类的数据。使用生成的样本和目标主题数据,我们进行独立的专题学习,以利用不同主题共享的共同知识。值得注意的是,我们的框架是普遍适用的,可以采用任何依赖主题的学习方法。在EEG-IMNet40基准的实验中,我们的模型可以带来一致的改进,而不管选择对象独立学习。此外,我们的方法显示前景良好的业绩,在5-BC_BC_BE_ brest sest sest 源中记录了我们5-intalestalexalex/ exexexmeck dest drogresmation 。