Brain-computer interfaces (BCIs) harness electroencephalographic signals for direct neural control of devices, offering a significant benefit for individuals with motor impairments. Traditional machine learning methods for EEG-based motor imagery (MI) classification encounter challenges such as manual feature extraction and susceptibility to noise. This paper introduces EEGEncoder, a deep learning framework that employs transformer models to surmount these limitations. Our innovative multi-scale fusion architecture captures both immediate and extended temporal features, thereby enhancing MI task classification precision. EEGEncoder's key innovations include the inaugural application of transformers in MI-EEG signal classification, a mixup data augmentation strategy for bolstered generalization, and a multi-task learning approach for refined predictive accuracy. When tested on the BCI Competition IV dataset 2a, our model established a new benchmark with its state-of-the-art performance. EEGEncoder signifies a substantial advancement in BCI technology, offering a robust, efficient, and effective tool for transforming thought into action, with the potential to significantly enhance the quality of life for those dependent on BCIs.
翻译:暂无翻译