While spiking neural networks (SNNs) offer a promising neurally-inspired model of computation, they are vulnerable to adversarial attacks. We present the first study that draws inspiration from neural homeostasis to design a threshold-adapting leaky integrate-and-fire (TA-LIF) neuron model and utilize TA-LIF neurons to construct the adversarially robust homeostatic SNNs (HoSNNs) for improved robustness. The TA-LIF model incorporates a self-stabilizing dynamic thresholding mechanism, offering a local feedback control solution to the minimization of each neuron's membrane potential error caused by adversarial disturbance. Theoretical analysis demonstrates favorable dynamic properties of TA-LIF neurons in terms of the bounded-input bounded-output stability and suppressed time growth of membrane potential error, underscoring their superior robustness compared with the standard LIF neurons. When trained with weak FGSM attacks (attack budget = 2/255) and tested with much stronger PGD attacks (attack budget = 8/255), our HoSNNs significantly improve model accuracy on several datasets: from 30.54% to 74.91% on FashionMNIST, from 0.44% to 35.06% on SVHN, from 0.56% to 42.63% on CIFAR10, from 0.04% to 16.66% on CIFAR100, over the conventional LIF-based SNNs.
翻译:暂无翻译