Optimization of accelerator performance parameters is limited by numerous trade-offs and finding the appropriate balance between optimization goals for an unknown system is challenging to achieve. Here we show that multi-objective Bayesian optimization can map the solution space of a laser wakefield accelerator in a very sample-efficient way. Using a Gaussian mixture model, we isolate contributions related to an electron bunch at a certain energy and we observe that there exists a wide range of Pareto-optimal solutions that trade beam energy versus charge at similar laser-to-beam efficiency. However, many applications such as light sources require particle beams at a certain target energy. Once such a constraint is introduced we observe a direct trade-off between energy spread and accelerator efficiency. We furthermore demonstrate how specific solutions can be exploited using \emph{a posteriori} scalarization of the objectives, thereby efficiently splitting the exploration and exploitation phases.


翻译:优化加速器性能参数受到众多权衡的限制,对于未知系统找到优化目标的适当平衡是具有挑战性的。本文展示了多目标贝叶斯优化能够以很高效率的方式映射激光等离子体加速器的解空间。利用高斯混合模型,我们隔离出与某个能量的电子束有关的贡献,并且观察到在类似的激光束-电子束效率下存在广泛的帕累托最优解。然而,许多应用,如光源,需要以一定的目标能量得到粒子束。一旦引入这样的约束,我们观察到能量展宽与加速器效率之间直接权衡。此外,我们展示了如何使用后验标量化来高效地分裂探索和利用阶段,以利用特定的解决方案。

0
下载
关闭预览

相关内容

Transformer推理的全栈优化综述
专知会员服务
82+阅读 · 2023年3月4日
最新《Transformers模型》教程,64页ppt
专知会员服务
306+阅读 · 2020年11月26日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
0+阅读 · 2023年5月17日
Arxiv
0+阅读 · 2023年5月15日
VIP会员
相关VIP内容
Transformer推理的全栈优化综述
专知会员服务
82+阅读 · 2023年3月4日
最新《Transformers模型》教程,64页ppt
专知会员服务
306+阅读 · 2020年11月26日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员