Reliable large-scale cell detection and segmentation is the fundamental first step to understanding biological processes in the brain. The ability to phenotype cells at scale can accelerate preclinical drug evaluation and system-level brain histology studies. The impressive advances in deep learning offer a practical solution to cell image detection and segmentation. Unfortunately, categorizing cells and delineating their boundaries for training deep networks is an expensive process that requires skilled biologists. This paper presents a novel self-supervised Dual-Loss Adaptive Masked Autoencoder (DAMA) for learning rich features from multiplexed immunofluorescence brain images. DAMA's objective function minimizes the conditional entropy in pixel-level reconstruction and feature-level regression. Unlike existing self-supervised learning methods based on a random image masking strategy, DAMA employs a novel adaptive mask sampling strategy to maximize mutual information and effectively learn brain cell data. To the best of our knowledge, this is the first effort to develop a self-supervised learning method for multiplexed immunofluorescence brain images. Our extensive experiments demonstrate that DAMA features enable superior cell detection, segmentation, and classification performance without requiring many annotations.
翻译:用于了解大脑生物过程的基本第一步是可靠的大型细胞检测和分解,这是了解大脑生物过程的基本第一步。 规模的苯型细胞能力可以加速临床前药物评估和系统级脑组织学研究。 深层学习的令人印象深刻的进步为细胞图像检测和分解提供了实用的解决方案。 不幸的是,细胞分类和划定其界限以培训深层网络是一个昂贵的过程,需要熟练的生物学家。 本文展示了一种新的自我监督的双重损失适应面罩自动编码(DAMA),用于学习多氧化免疫素大脑图像的丰富特征。 DAMA的目标功能将像素级重建和特征回归中的有条件的酶最小化。 与基于随机图像遮蔽战略的现有自我监督的学习方法不同, DAMA采用了一种新的适应式掩码取样战略,以最大限度地共享信息并有效地学习脑细胞数据。 根据我们的知识,这是为多氧化免疫素大脑图像开发一种自我监督的学习方法的第一次尝试。 我们的广泛实验显示DAMA的特性使得高级细胞分级能够进行不要求的高级分级。