This paper proposes BRIEF, a backward reduction algorithm that explores compact CNN-model designs from the information flow perspective. This algorithm can remove substantial non-zero weighting parameters (redundant neural channels) of a network by considering its dynamic behavior, which traditional model-compaction techniques cannot achieve. With the aid of our proposed algorithm, we achieve significant model reduction on ResNet-34 in the ImageNet scale (32.3% reduction), which is 3X better than the previous result (10.8%). Even for highly optimized models such as SqueezeNet and MobileNet, we can achieve additional 10.81% and 37.56% reduction, respectively, with negligible performance degradation.
翻译:本文提出BRIEF, 这是一种从信息流角度探索CNN模型设计的后向削减算法。 这种算法可以通过考虑其动态行为来消除网络的大量非零加权参数(冗余神经频道 ), 而传统模型组合技术无法实现这种动态行为。 借助我们提议的算法,我们实现了图像网规模ResNet-34(32.3%的减幅)的大幅减幅(3x% ), 比前一个结果(10.8 % ) 更好。 即使是高度优化的模型,如SqueezeNet和移动网络,我们也可以分别实现10.81%和37.56%的减幅,而性能退化微乎其微。