It is often desirable to capture and map semantic information of an environment during simultaneous localization and mapping (SLAM). Such semantic information can enable a robot to better distinguish places with similar low-level geometric and visual features and perform high-level tasks that use semantic information about objects to be manipulated and environments to be navigated. While semantic SLAM has gained increasing attention, there is little research on semanticlevel data association based on semantic objects, i.e., object-level data association. In this paper, we propose a novel object-level data association algorithm based on bag of words algorithm, formulated as a maximum weighted bipartite matching problem. With object-level data association solved, we develop a quadratic-programming-based semantic object initialization scheme using dual quadric and introduce additional constraints to improve the success rate of object initialization. The integrated semantic-level SLAM system can achieve high-accuracy object-level data association and real-time semantic mapping as demonstrated in the experiments. The online semantic map building and semantic-level localization capabilities facilitate semantic-level mapping and task planning in a priori unknown environment.
翻译:在同步本地化和绘图(SLAM)期间,通常有必要捕获和绘制环境的语义信息。这种语义信息可以使机器人更好地区分具有类似低层次的低层次几何和视觉特征的地点,并完成使用关于要操纵的物体和需要导航的环境的语义信息的高级别任务。虽然语义 SLAM越来越受到注意,但对基于语义物体的语义数据协会,即对象级数据协会的研究却很少。在本文中,我们提议基于一包单词算法的新的对象级数据协会算法,该算法是作为最大加权双片匹配问题拟订的。随着对象级数据协会的解决,我们开发了一种使用双二次二次二次二次方言义的基于语义的语义拼图天体初始化计划,并增加了提高对象初始化成功率的制约因素。综合语义级SLAMM系统可以实现高准确性对象级数据协会和实时语义图绘制,正如实验所显示的那样。在线语义地图的构建和语义级级本地化的本地化能力,便利了先前水平的语义绘制任务。