Testing isomorphism of infinite groups is a classical topic, but from the complexity theory viewpoint, few results are known. S{\'e}nizergues and the fifth author (ICALP2018) proved that the isomorphism problem for virtually free groups is decidable in $\mathsf{PSPACE}$ when the input is given in terms of so-called virtually free presentations. Here we consider the isomorphism problem for the class of \emph{plain groups}, that is, groups that are isomorphic to a free product of finitely many finite groups and finitely many copies of the infinite cyclic group. Every plain group is naturally and efficiently presented via an inverse-closed finite convergent length-reducing rewriting system. We prove that the isomorphism problem for plain groups given in this form lies in the polynomial time hierarchy, more precisely, in $\Sigma_3^{\mathsf{P}}$. This result is achieved by combining new geometric and algebraic characterisations of groups presented by inverse-closed finite convergent length-reducing rewriting systems developed in recent work of the second and third authors (2021) with classical finite group isomorphism results of Babai and Szemer\'edi (1984).
翻译:无限群落的测试是典型的话题, 但从复杂的理论角度看, 鲜为人知。 S&'e}nizergues 和第五作者( ICEP2018) 证明, 当输入所谓的“ 自由群落” 时, 无限群落的测试是典型的, 当输入以所谓的“ 自由演示” 来显示时, 几乎自由群群落的无形态化问题可以在$\ mathsf{ PSPACE} $ 中出现。 这里我们考虑了 \ emph{ place groups 类群落的无形态化问题, 也就是说, 这些群群落是有限的有限群落和无限循环组的有限副本。 每个平质组通过反封闭的有限趋同减少长度重写系统自然和高效地展示。 我们证明, 以这种形式给出的普通群落的无形态问题在于多时段结构, 更准确地说, $\ SGmama_ 3{\\ pasf{P ⁇ } $。 。 。 。 通过将反封闭的定型群落组合提出的新的地理测量和新修正( 20年) 的第二个修正修正的作者的复制工作结果( ) 和最新的版本) 和新的系统(BABADRA 21) 。