Recently a novel framework has been proposed for designing the molecular structure of chemical compounds using both artificial neural networks (ANNs) and mixed integer linear programming (MILP). In the framework, we first define a feature vector $f(C)$ of a chemical graph $C$ and construct an ANN that maps $x=f(C)$ to a predicted value $\eta(x)$ of a chemical property $\pi$ to $C$. After this, we formulate an MILP that simulates the computation process of $f(C)$ from $C$ and that of $\eta(x)$ from $x$. Given a target value $y^*$ of the chemical property $\pi$, we infer a chemical graph $C^\dagger$ such that $\eta(f(C^\dagger))=y^*$ by solving the MILP. In this paper, we use linear regression to construct a prediction function $\eta$ instead of ANNs. For this, we derive an MILP formulation that simulates the computation process of a prediction function by linear regression. The results of computational experiments suggest our method can infer chemical graphs with around up to 50 non-hydrogen atoms.
翻译:最近提出了一个新框架,用于设计化学化合物分子结构,使用人工神经网络和混合整线线性编程来设计化学化合物的人工神经网络(ANNs)和混合整线性编程(MILP)。在这个框架内,我们首先确定化学图形(C$)的特质矢量(f(C)美元),然后建造一个ANN,将美元=f(C)美元映射为化学属性的预测值($元(x)美元至美元)。在这之后,我们制定了一个MILP,从美元和美元(x)美元模拟计算过程(f(C)美元)和美元(eta(x)美元)的计算过程。考虑到化学属性($)的目标值($),我们通过解决 MILP,将美元(f)(C)=f(x)美元=(x)美元至美元。在这个文件中,我们使用线性回归法来构建一个以美元而不是ANS的预测函数。为此,我们从MILP制成了一个模型,以直线性回归模型来模拟通过直线性回归法显示化学元的计算结果。