Many papers in the field of integer linear programming (ILP, for short) are devoted to problems of the type $\max\{c^\top x \colon A x = b,\, x \in \mathbb{Z}^n_{\geq 0}\}$, where all the entries of $A,b,c$ are integer, parameterized by the number of rows of $A$ and $\|A\|_{\max}$. This class of problems is known under the name of ILP problems in the standard form, adding the word "bounded" if $x \leq u$, for some integer vector $u$. Recently, many new sparsity, proximity, and complexity results were obtained for bounded and unbounded ILP problems in the standard form. In this paper, we consider ILP problems in the canonical form $$\max\{c^\top x \colon b_l \leq A x \leq b_r,\, x \in \mathbb{Z}^n\},$$ where $b_l$ and $b_r$ are integer vectors. We assume that the integer matrix $A$ has the rank $n$, $(n + m)$ rows, $n$ columns, and parameterize the problem by $m$ and $\Delta(A)$, where $\Delta(A)$ is the maximum of $n \times n$ sub-determinants of $A$, taken in the absolute value. We show that any ILP problem in the standard form can be polynomially reduced to some ILP problem in the canonical form, preserving $m$ and $\Delta(A)$, but the reverse reduction is not always possible. More precisely, we define the class of generalized ILP problems in the standard form, which includes an additional group constraint, and prove the equivalence to ILP problems in the canonical form. We generalize known sparsity, proximity, and complexity bounds for ILP problems in the canonical form. Additionally, sometimes, we strengthen previously known results for ILP problems in the canonical form, and, sometimes, we give shorter proofs. Finally, we consider the special cases of $m \in \{0,1\}$. By this way, we give specialised sparsity, proximity, and complexity bounds for the problems on simplices, Knapsack problems and Subset-Sum problems.


翻译:整数线性编程 (ILPP, 简称) 领域的很多论文都专门处理以下类型的问题: $max\c ⁇ top x\colon Ax=b,\\xxxxxcolon Ax=b,\xxx\lcgeq 0 ⁇ $美元, 其中所有A, b, c美元是整数线性编程的整数, 参数化以美元计为参数。 这个类问题在标准格式的 ILP 问题的名称下以 IMP 名称为名, 如果美元=leq u$, 则加上“bleq u $ ”, 最近, 在标准格式中, 许多新的节性、 接近和复杂的结果以 $为单位。 在标准格式中, 我们将ILP 的问题以美元 标数xxxxx A.r, 在标准格式中, 以美元格式中, 以 美元 美元 以 美元 以 美元 以 美元 以 美元 以 以 美元 美元 以 美元 以 以 美元 以 以 美元 以 以 以 以 以 以 美元 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以

0
下载
关闭预览

相关内容

归纳逻辑程序设计(ILP)是机器学习的一个分支,它依赖于逻辑程序作为一种统一的表示语言来表达例子、背景知识和假设。基于一阶逻辑的ILP具有很强的表示形式,为多关系学习和数据挖掘提供了一种很好的方法。International Conference on Inductive Logic Programming系列始于1991年,是学习结构化或半结构化关系数据的首要国际论坛。最初专注于逻辑程序的归纳,多年来,它大大扩展了研究范围,并欢迎在逻辑学习、多关系数据挖掘、统计关系学习、图形和树挖掘等各个方面作出贡献,学习其他(非命题)基于逻辑的知识表示框架,探索统计学习和其他概率方法的交叉点。官网链接:https://ilp2019.org/
【干货书】开放数据结构,Open Data Structures,337页pdf
专知会员服务
16+阅读 · 2021年9月17日
专知会员服务
91+阅读 · 2021年8月28日
专知会员服务
75+阅读 · 2021年3月16日
专知会员服务
50+阅读 · 2020年12月14日
专知会员服务
38+阅读 · 2020年9月6日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
76+阅读 · 2020年7月26日
强化学习最新教程,17页pdf
专知会员服务
168+阅读 · 2019年10月11日
机器学习在材料科学中的应用综述,21页pdf
专知会员服务
47+阅读 · 2019年9月24日
鲁棒机器学习相关文献集
专知
8+阅读 · 2019年8月18日
已删除
将门创投
6+阅读 · 2019年7月11日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
LeetCode的C++ 11/Python3 题解及解释
专知
16+阅读 · 2019年4月13日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
【推荐】免费书(草稿):数据科学的数学基础
机器学习研究会
19+阅读 · 2017年10月1日
【推荐】深度学习目标检测概览
机器学习研究会
10+阅读 · 2017年9月1日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
Arxiv
0+阅读 · 2021年11月2日
Arxiv
3+阅读 · 2018年2月24日
VIP会员
相关VIP内容
【干货书】开放数据结构,Open Data Structures,337页pdf
专知会员服务
16+阅读 · 2021年9月17日
专知会员服务
91+阅读 · 2021年8月28日
专知会员服务
75+阅读 · 2021年3月16日
专知会员服务
50+阅读 · 2020年12月14日
专知会员服务
38+阅读 · 2020年9月6日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
76+阅读 · 2020年7月26日
强化学习最新教程,17页pdf
专知会员服务
168+阅读 · 2019年10月11日
机器学习在材料科学中的应用综述,21页pdf
专知会员服务
47+阅读 · 2019年9月24日
相关资讯
鲁棒机器学习相关文献集
专知
8+阅读 · 2019年8月18日
已删除
将门创投
6+阅读 · 2019年7月11日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
LeetCode的C++ 11/Python3 题解及解释
专知
16+阅读 · 2019年4月13日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
【推荐】免费书(草稿):数据科学的数学基础
机器学习研究会
19+阅读 · 2017年10月1日
【推荐】深度学习目标检测概览
机器学习研究会
10+阅读 · 2017年9月1日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
Top
微信扫码咨询专知VIP会员