In the paper [Hainaut, D. and Colwell, D.B., A structural model for credit risk with switchingprocesses and synchronous jumps, The European Journal of Finance44(33) (4238):3262-3284],the authors exploit a synchronous-jump regime-switching model to compute the default probabilityof a publicly traded company. Here, we first generalize the proposed L\'evy model to more generalsetting of tempered stable processes recently introduced into the finance literature. Based on thesingularity of the resulting partial integro-differential operator, we propose a general frameworkbased on strictly positive-definite functions to de-singularize the operator. We then analyze anefficient meshfree collocation method based on radial basis functions to approximate the solution ofthe corresponding system of partial integro-differential equations arising from the structural creditrisk model. We show that under some regularity assumptions, our proposed method naturallyde-sinularizes the problem in the tempered stable case. Numerical results of applying the methodon some standard examples from the literature confirms the accuracy of our theoretical results andnumerical algorithm.
翻译:在论文[Hainaut, D. and Colwell, D.B., 《转换过程和同步跳跃的信用风险结构模型》,《欧洲财政期刊》44 (33) (4238) 3262-3284),作者们利用同步跳跃制度转换模型来计算上市公司的默认概率。在这里,我们首先将拟议的L\'evy模型概括为最近引入金融文献的温和稳定流程的更普遍设置。根据由此产生的部分内分化操作器的组合性,我们提议了一个基于严格正定义功能的总体框架,使操作器脱钩。然后我们根据辐射功能分析了一种高效的无网状合用法,以近似于结构信用风险模型所产生的部分内分化方程对应系统的解决办法。我们表明,根据某些常规假设,我们拟议的方法自然地将中下调稳定案例的问题分解为问题。在应用某种标准数字和文献中的一些标准模型中,我们运用方法得出的数值结果证实了我们理论和算法的准确性。