This article presents an overview and analysis of spatial-to-spectral harmonic-modulated arrays (SHAs). Compared to traditional analog or digital beamforming arrays, SHAs enable concurrent multi-beamforming without requiring substantial hardware replication. SHAs replace the need for hardware replication with frequency-domain multiplexing. Furthermore, SHAs have the potential to become key contributors to future 6G networks by enabling scalable multi-user communications, joint communication and sensing, and spatial interference mitigation. In addition, an analysis of the SHA's harmonic-modulation waveform and its effects on gain, noise and bandwidth is presented. A comb-like modulation waveform for SHAs that minimizes spectral inefficiency is proposed. Further, an analysis of the SHA's capability to independently steer multiple beams is presented. This capability is quantified in terms of the SHA's spatial-to-spectral degrees of freedom. Lastly, this work introduces a novel SHA architecture that provides three spatial-to-spectral degrees of freedom with minimal hardware replication.
翻译:暂无翻译