The aim of this paper is to design computationally-efficient and optimal algorithms for the online and stochastic exp-concave optimization settings. Typical algorithms for these settings, such as the Online Newton Step (ONS), can guarantee a $O(d\ln T)$ bound on their regret after $T$ rounds, where $d$ is the dimension of the feasible set. However, such algorithms perform so-called generalized projections whenever their iterates step outside the feasible set. Such generalized projections require $\Omega(d^3)$ arithmetic operations even for simple sets such a Euclidean ball, making the total runtime of ONS of order $d^3 T$ after $T$ rounds, in the worst-case. In this paper, we side-step generalized projections by using a self-concordant barrier as a regularizer to compute the Newton steps. This ensures that the iterates are always within the feasible set without requiring projections. This approach still requires the computation of the inverse of the Hessian of the barrier at every step. However, using the stability properties of the Newton steps, we show that the inverse of the Hessians can be efficiently approximated via Taylor expansions for most rounds, resulting in a $O(d^2 T +d^\omega \sqrt{T})$ total computational complexity, where $\omega$ is the exponent of matrix multiplication. In the stochastic setting, we show that this translates into a $O(d^3/\epsilon)$ computational complexity for finding an $\epsilon$-suboptimal point, answering an open question by Koren 2013. We first show these new results for the simple case where the feasible set is a Euclidean ball. Then, to move to general convex set, we use a reduction to Online Convex Optimization over the Euclidean ball. Our final algorithm can be viewed as a more efficient version of ONS.


翻译:本文的目的是设计计算高效且最优化的计算算法, 用于在线和随机化的Excal- Excredition 优化设置。 这些设置的典型算法, 如在线 牛顿 Step (ONS), 可以在最坏的情况下, 保证在 $T 回合后, 他们的遗憾中, 美元是可行的 。 但是, 这些算法在它们超越可行设置时, 就会进行所谓的通用预测。 这种通用的预测甚至需要 $\ omega (d3) $ 的计算操作, 甚至简单设置 Eucliidean 球, 使 ONS 的运行时间在 $T 回合后 $d_ 3 T$。 在本文中, 我们使用一个自调的屏障屏障屏障障碍值, 向普通的设置一个不需预测值。 这个方法仍然需要计算最终屏障的逆向下方的 Exional 。 然而, 使用最稳定的 Edx 将 美元 的 Ex 的 Ex 版本, 我们用一个自动的 状态来显示 美元 。

0
下载
关闭预览

相关内容

【硬核书】矩阵代数基础,248页pdf
专知会员服务
85+阅读 · 2021年12月9日
专知会员服务
161+阅读 · 2020年1月16日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
国家自然科学基金
1+阅读 · 2017年12月31日
国家自然科学基金
1+阅读 · 2017年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Arxiv
0+阅读 · 2022年12月22日
Arxiv
11+阅读 · 2022年9月1日
Learning in the Frequency Domain
Arxiv
11+阅读 · 2020年3月12日
VIP会员
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
相关基金
国家自然科学基金
1+阅读 · 2017年12月31日
国家自然科学基金
1+阅读 · 2017年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Top
微信扫码咨询专知VIP会员