We present an efficient quantum algorithm to simulate nonlinear differential equations with polynomial vector fields of arbitrary degree on quantum platforms. Models of physical systems that are governed by ordinary differential equations (ODEs) or partial differential equation (PDEs) can be challenging to solve on classical computers due to high dimensionality, stiffness, nonlinearities, and sensitive dependence to initial conditions. For sparse $n$-dimensional linear ODEs, quantum algorithms have been developed which can produce a quantum state proportional to the solution in poly(log(nx)) time using the quantum linear systems algorithm (QLSA). Recently, this framework was extended to systems of nonlinear ODEs with quadratic polynomial vector fields by applying Carleman linearization that enables the embedding of the quadratic system into an approximate linear form. A detailed complexity analysis was conducted which showed significant computational advantage under certain conditions. We present an extension of this algorithm to deal with systems of nonlinear ODEs with $k$-th degree polynomial vector fields for arbitrary (finite) values of $k$. The steps involve: 1) mapping the $k$-th degree polynomial ODE to a higher dimensional quadratic polynomial ODE; 2) applying Carleman linearization to transform the quadratic ODE to an infinite-dimensional system of linear ODEs; 3) truncating and discretizing the linear ODE and solving using the forward Euler method and QLSA. Alternatively, one could apply Carleman linearization directly to the $k$-th degree polynomial ODE, resulting in a system of infinite-dimensional linear ODEs, and then apply step 3. This solution route can be computationally more efficient. We present detailed complexity analysis of the proposed algorithms, prove polynomial scaling of runtime on $k$ and demonstrate the framework on an example.
翻译:我们提出了一个高效的量子算法,用于模拟非线性差异方程式,在量子平台上以任意度的多线性矢量场模拟非线性矢量方。最近,由普通差分方(ODEs)或部分差分方(PDEs)管理的物理系统模型,由于高维度、僵硬度、非线性以及对初始条件的敏感依赖性,在古典计算机上可能难以解决。对于稀疏的美元维度线性线性分子数方程式,已经开发了量性算法,能够用量性量性线性线性系统(log(nxx))的时间来产生与解决方案成比例。最近,这个框架被扩展至非线性线性线性线性分子式分子式阵列(ODEs)系统,将直线性极性多线性极性多线性阵列的ODE-Ordeal-modeal-modeal-modeal-modeal-modeal-ral-modeal-modeal-modeal-mode Oral-mode-modeal-mode-mode-mode-mode-mode-modeal-mode-mode-modeal-modeal-modeal-modeal-modeal-modeal-mode-mode-mode-mode-mode-mode-mode-mode-mode-mode-mode-modeal-modeal-mode-modeal-modeal-mode-mode-mode-mode-modeal-mode-mode-mode-mode-mode-mode-mode-mode-mode-mode-mode-mode-mode-mode-mode-mode-mode-mode-mode-mode-moal-mode-mode-mode-mode-mode-mode-mode-mode-mode-moal-mode-mode-mode-mode-mode-mode-mode-mode-mode-mode-mode-mode-mode-mode-mode-mode-