Event cameras are promising devices for lowlatency tracking and high-dynamic range imaging. In this paper,we propose a novel approach for 6 degree-of-freedom (6-DoF)object motion tracking that combines measurements of eventand frame-based cameras. We formulate tracking from highrate events with a probabilistic generative model of the eventmeasurement process of the object. On a second layer, we refinethe object trajectory in slower rate image frames through directimage alignment. We evaluate the accuracy of our approach inseveral object tracking scenarios with synthetic data, and alsoperform experiments with real data.


翻译:活动相机是低延度跟踪和高动态射程成像的有希望的装置。在本文中,我们提出了6度自由(6-DoF)物体运动跟踪的新办法,该办法结合对事件和基底摄影机的测量。我们从高频事件和物体事件测量过程的概率基因化模型进行跟踪。在第二层,我们通过直接图像对齐来改进低速图像框中的天体轨迹。我们用合成数据来评估我们方法中无数物体跟踪情景的准确性,用真实数据来评估实验的精确性。

0
下载
关闭预览

相关内容

机器学习系统设计系统评估标准
【AAAI2021】对比聚类,Contrastive Clustering
专知会员服务
76+阅读 · 2021年1月30日
专知会员服务
113+阅读 · 2020年10月8日
【ICML2020】多视角对比图表示学习,Contrastive Multi-View GRL
专知会员服务
79+阅读 · 2020年6月11日
跟踪SLAM前沿动态系列之ICCV2019
泡泡机器人SLAM
7+阅读 · 2019年11月23日
【泡泡汇总】CVPR2019 SLAM Paperlist
泡泡机器人SLAM
14+阅读 · 2019年6月12日
无人机视觉挑战赛 | ICCV 2019 Workshop—VisDrone2019
PaperWeekly
7+阅读 · 2019年5月5日
【泡泡一分钟】基于运动估计的激光雷达和相机标定方法
泡泡机器人SLAM
25+阅读 · 2019年1月17日
【泡泡一分钟】用于评估视觉惯性里程计的TUM VI数据集
泡泡机器人SLAM
11+阅读 · 2019年1月4日
【跟踪Tracking】15篇论文+代码 | 中秋快乐~
专知
18+阅读 · 2018年9月24日
Joint Monocular 3D Vehicle Detection and Tracking
Arxiv
8+阅读 · 2018年12月2日
Arxiv
9+阅读 · 2018年5月22日
Arxiv
6+阅读 · 2018年3月28日
Arxiv
3+阅读 · 2018年3月22日
VIP会员
Top
微信扫码咨询专知VIP会员