In this technical report, we introduce TempT, a novel method for test time adaptation on videos by ensuring temporal coherence of predictions across sequential frames. TempT is a powerful tool with broad applications in computer vision tasks, including facial expression recognition (FER) in videos. We evaluate TempT's performance on the AffWild2 dataset as part of the Expression Classification Challenge at the 5th Workshop and Competition on Affective Behavior Analysis in the wild (ABAW). Our approach focuses solely on the unimodal visual aspect of the data and utilizes a popular 2D CNN backbone, in contrast to larger sequential or attention based models. Our experimental results demonstrate that TempT has competitive performance in comparison to previous years reported performances, and its efficacy provides a compelling proof of concept for its use in various real world applications.


翻译:在这篇技术报告中,我们介绍了TempT,一种通过确保连续帧之间的预测的时间一致性来进行视频测试时间自适应的新方法。TempT是计算机视觉任务中的强大工具,包括视频中的面部表情识别(FER)。我们使用流行的2D CNN骨干,专注于数据的单模视觉方面,并在AffWild2数据集上作为第5届野外情感行为分析研讨会(ABAW)中的表情分类挑战的一部分对TempT的性能进行评估。我们的实验结果表明,TempT与往年报告的性能相比有竞争力,并且其功效为其在各种实际应用中的使用提供了令人信服的概念证明。

0
下载
关闭预览

相关内容

[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
0+阅读 · 2023年5月8日
VIP会员
相关VIP内容
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员