Dealing with missing values and incomplete time series is a labor-intensive and time-consuming inevitable task when handling data coming from real-world applications. Effective spatio-temporal representations would allow imputation methods to reconstruct missing temporal data by exploiting information coming from sensors at different locations. However, standard methods fall short in capturing the nonlinear time and space dependencies existing within networks of interconnected sensors and do not take full advantage of the available - and often strong - relational information. Notably, most of state-of-the-art imputation methods based on deep learning do not explicitly model relational aspects and, in any case, do not exploit processing frameworks able to adequately represent structured spatio-temporal data. Conversely, graph neural networks have recently surged in popularity as both expressive and scalable tools for processing sequential data with relational inductive biases. In this work, we present the first assessment of graph neural networks in the context of multivariate time series imputation. In particular, we introduce a novel graph neural network architecture, named GRIL, which aims at reconstructing missing data in the different channels of a multivariate time series by learning spatial-temporal representations through message passing. Preliminary empirical results show that our model outperforms state-of-the-art methods in the imputation task on relevant benchmarks with mean absolute error improvements often higher than 20%.


翻译:处理缺失的值值和不完全的时间序列是处理来自现实世界应用的数据时一个劳动密集和耗时的不可避免的任务。有效的时空表达方式将允许通过利用不同地点的传感器所提供的信息来进行估算,以重建缺失的时间数据。然而,标准方法在捕捉互联传感器网络中存在的非线性时间和空间依赖性方面不尽如人意,并且没有充分利用现有――而且往往是强有力的――关联信息。值得注意的是,基于深层次学习的多数最新估算方法并不明确地模拟关系方面,而且无论如何,也不利用能够充分代表结构化时空数据的处理框架。相反,图表神经网络最近作为表态和可扩展工具,在利用关系感带偏差偏差的传感器网络处理连续数据方面表现得很快,而且没有充分利用现有――而且往往是强大的――关系信息。在多变时间序列估算中,我们引入了一个新型的图形神经网络结构,名为GRIL,目的是通过不同的空间定位模型来重建缺失的数据,而不是通过不同的空间时间序列模型来展示一个不同的空间定位模型,从而展示了我们所缺的绝对时间序列。

4
下载
关闭预览

相关内容

一份简单《图神经网络》教程,28页ppt
专知会员服务
123+阅读 · 2020年8月2日
【清华大学】图随机神经网络,Graph Random Neural Networks
专知会员服务
154+阅读 · 2020年5月26日
【阿尔托大学】图神经网络,Graph Neural Networks,附60页ppt
专知会员服务
181+阅读 · 2020年4月26日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
图机器学习 2.2-2.4 Properties of Networks, Random Graph
图与推荐
10+阅读 · 2020年3月28日
论文浅尝 | GMNN: Graph Markov Neural Networks
开放知识图谱
20+阅读 · 2020年2月14日
Graph Neural Networks 综述
计算机视觉life
29+阅读 · 2019年8月13日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年11月14日
Arxiv
0+阅读 · 2021年11月12日
Arxiv
8+阅读 · 2021年2月19日
Identity-aware Graph Neural Networks
Arxiv
14+阅读 · 2021年1月25日
Arxiv
27+阅读 · 2020年6月19日
Arxiv
6+阅读 · 2019年11月14日
Arxiv
23+阅读 · 2018年10月1日
VIP会员
相关资讯
图机器学习 2.2-2.4 Properties of Networks, Random Graph
图与推荐
10+阅读 · 2020年3月28日
论文浅尝 | GMNN: Graph Markov Neural Networks
开放知识图谱
20+阅读 · 2020年2月14日
Graph Neural Networks 综述
计算机视觉life
29+阅读 · 2019年8月13日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
相关论文
Arxiv
0+阅读 · 2021年11月14日
Arxiv
0+阅读 · 2021年11月12日
Arxiv
8+阅读 · 2021年2月19日
Identity-aware Graph Neural Networks
Arxiv
14+阅读 · 2021年1月25日
Arxiv
27+阅读 · 2020年6月19日
Arxiv
6+阅读 · 2019年11月14日
Arxiv
23+阅读 · 2018年10月1日
Top
微信扫码咨询专知VIP会员