Graph Neural Networks have become one of the indispensable tools to learn from graph-structured data, and their usefulness has been shown in wide variety of tasks. In recent years, there have been tremendous improvements in architecture design, resulting in better performance on various prediction tasks. In general, these neural architectures combine node feature aggregation and feature transformation using learnable weight matrix in the same layer. This makes it challenging to analyze the importance of node features aggregated from various hops and the expressiveness of the neural network layers. As different graph datasets show varying levels of homophily and heterophily in features and class label distribution, it becomes essential to understand which features are important for the prediction tasks without any prior information. In this work, we decouple the node feature aggregation step and depth of graph neural network, and empirically analyze how different aggregated features play a role in prediction performance. We show that not all features generated via aggregation steps are useful, and often using these less informative features can be detrimental to the performance of the GNN model. Through our experiments, we show that learning certain subsets of these features can lead to better performance on wide variety of datasets. We propose to use softmax as a regularizer and "soft-selector" of features aggregated from neighbors at different hop distances; and L2-Normalization over GNN layers. Combining these techniques, we present a simple and shallow model, Feature Selection Graph Neural Network (FSGNN), and show empirically that the proposed model achieves comparable or even higher accuracy than state-of-the-art GNN models in nine benchmark datasets for the node classification task, with remarkable improvements up to 51.1%.


翻译:神经网络已经成为从图表结构数据中学习的不可或缺的工具之一, 并且它们的作用在各种各样的任务中表现出来。 最近几年, 建筑设计有了巨大的改进, 使得各种预测任务的性能得到更好的表现。 一般来说, 这些神经结构将节点特征集合和特征转换结合起来, 使用同一层的可学习加权矩阵。 这就使得分析从各种悬浮和神经网络层的表达性来综合结点特征的重要性变得很困难。 由于不同的图表数据集在特性和类级标签分布方面表现出不同程度的一致和偏差。 最近几年, 结构设计方面有了巨大的改进, 结构设计有了巨大的改进, 并且没有以前的任何信息。 在这项工作中, 我们分解结结节特征的组合和深度, 并用可学习的不同组合特性来发挥预测性作用。 我们显示, 并非所有通过汇总步骤生成的特征都有用, 并且往往使用这些不那么信息化的特性对 GNNNM 模型的性能性能有不同。 我们通过实验, 学习这些模型的某些分数的模型可以导致更简单、 更精确的GML 的G 数据级化, 我们用的是, 定期的模型的GLAL 的模型, 用的是, 等级的 。

0
下载
关闭预览

相关内容

专知会员服务
15+阅读 · 2021年5月21日
应用机器学习书稿,361页pdf
专知会员服务
58+阅读 · 2020年11月24日
专知会员服务
52+阅读 · 2020年11月3日
系列教程GNN-algorithms之七:《图同构网络—GIN》
专知会员服务
47+阅读 · 2020年8月9日
【清华大学】图随机神经网络,Graph Random Neural Networks
专知会员服务
155+阅读 · 2020年5月26日
图机器学习 2.2-2.4 Properties of Networks, Random Graph
图与推荐
10+阅读 · 2020年3月28日
Graph Neural Networks 综述
计算机视觉life
29+阅读 · 2019年8月13日
Graph Neural Network(GNN)最全资源整理分享
深度学习与NLP
339+阅读 · 2019年7月9日
深度卷积神经网络中的降采样
极市平台
12+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
最佳实践:深度学习用于自然语言处理(三)
待字闺中
3+阅读 · 2017年8月20日
Arxiv
38+阅读 · 2020年12月2日
Arxiv
4+阅读 · 2020年9月28日
Pointer Graph Networks
Arxiv
7+阅读 · 2020年6月11日
Simplifying Graph Convolutional Networks
Arxiv
7+阅读 · 2019年6月20日
Arxiv
23+阅读 · 2018年10月1日
Arxiv
10+阅读 · 2018年2月4日
VIP会员
相关资讯
图机器学习 2.2-2.4 Properties of Networks, Random Graph
图与推荐
10+阅读 · 2020年3月28日
Graph Neural Networks 综述
计算机视觉life
29+阅读 · 2019年8月13日
Graph Neural Network(GNN)最全资源整理分享
深度学习与NLP
339+阅读 · 2019年7月9日
深度卷积神经网络中的降采样
极市平台
12+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
最佳实践:深度学习用于自然语言处理(三)
待字闺中
3+阅读 · 2017年8月20日
相关论文
Arxiv
38+阅读 · 2020年12月2日
Arxiv
4+阅读 · 2020年9月28日
Pointer Graph Networks
Arxiv
7+阅读 · 2020年6月11日
Simplifying Graph Convolutional Networks
Arxiv
7+阅读 · 2019年6月20日
Arxiv
23+阅读 · 2018年10月1日
Arxiv
10+阅读 · 2018年2月4日
Top
微信扫码咨询专知VIP会员