Some grammatical error correction (GEC) systems incorporate hand-crafted rules and achieve positive results. However, manually defining rules is time-consuming and laborious. In view of this, we propose a method to mine error templates for GEC automatically. An error template is a regular expression aiming at identifying text errors. We use the web crawler to acquire such error templates from the Internet. For each template, we further select the corresponding corrective action by using the language model perplexity as a criterion. We have accumulated 1,119 error templates for Chinese GEC based on this method. Experimental results on the newly proposed CTC-2021 Chinese GEC benchmark show that combing our error templates can effectively improve the performance of a strong GEC system, especially on two error types with very little training data. Our error templates are available at \url{https://github.com/HillZhang1999/gec_error_template}.
翻译:某些语法错误校正(GEC)系统包含手工制作的规则,并取得积极结果。然而,手工定义规则耗费时间且费力。 有鉴于此, 我们提议了一种方法, 用于为 GEC 自动埋设错误模板。 错误模板是一个常规表达式, 旨在识别文本错误。 我们使用网络爬行器从互联网上获取错误模板。 对于每个模板, 我们进一步选择相应的纠正行动, 使用语言模式的易懂性作为标准。 我们根据这种方法为中国的 GEC 积累了 1,119个错误模板。 新建的 CTC-2021 中国GEC 基准的实验结果显示, 梳理我们的错误模板可以有效地改进强势 GEC 系统, 特别是两种错误类型, 且培训数据很少。 我们的错误模板可以在\url{https://github.com/HillZhang1999/gec_error_template} 。