Graph edge perturbations are dedicated to damaging the prediction of graph neural networks by modifying the graph structure. Previous gray-box attackers employ gradients from the surrogate model to locate the vulnerable edges to perturb the graph structure. However, unreliability exists in gradients on graph structures, which is rarely studied by previous works. In this paper, we discuss and analyze the errors caused by the unreliability of the structural gradients. These errors arise from rough gradient usage due to the discreteness of the graph structure and from the unreliability in the meta-gradient on the graph structure. In order to address these problems, we propose a novel attack model with methods to reduce the errors inside the structural gradients. We propose edge discrete sampling to select the edge perturbations associated with hierarchical candidate selection to ensure computational efficiency. In addition, semantic invariance and momentum gradient ensemble are proposed to address the gradient fluctuation on semantic-augmented graphs and the instability of the surrogate model. Experiments are conducted in untargeted gray-box poisoning scenarios and demonstrate the improvement in the performance of our approach.
翻译:图形边缘扰动专门用来通过修改图形结构破坏对图形神经网络的预测。 以前的灰盒攻击者使用替代模型的梯度来定位脆弱边缘以扰动图形结构。 但是, 图形结构的梯度存在不可靠性, 以前的工作很少研究这一点。 在本文中, 我们讨论和分析结构梯度不可靠性造成的错误。 这些错误产生于图形结构的离散性以及图结构元梯度不可靠性造成的粗梯度使用。 为了解决这些问题, 我们提议了一个新型攻击模型, 其方法就是减少结构梯度中的错误。 我们建议使用边缘离散抽样来选择与等级选择相联的梯度, 以确保计算效率。 此外, 提议了静态变异和动量梯度梯度共振动等, 以解决语义图结构的梯度波动问题, 以及替代模型的不稳定性。 实验是在非目标灰盒中毒情况下进行的, 并展示了我们方法的改进性能 。