The Virtual Element Method (VEM) is a very effective framework to design numerical approximations with high global regularity to the solutions of elliptic partial differential equations. In this paper, we review the construction of such approximations for an elliptic problem of order $p_1$ using conforming, finite dimensional subspaces of $ H^{p_2}(\Omega)$, where $p_1$ and $p_2$ are two integer numbers such that $p_2 \geq p_1 \geq 1$ and $\Omega\in R^2$ is the computational domain. An abstract convergence result is presented in a suitably defined energy norm. The space formulation and major aspects such as the choice and unisolvence of the degrees of freedom are discussed, also providing specific examples corresponding to various practical cases of high global regularity. Finally, the construction of the "enhanced" formulation of the virtual element spaces is also discussed in details with a proof that the dimension of the "regular" and "enhanced" spaces is the same and that the virtual element functions in both spaces can be described by the same choice of the degrees of freedom.
翻译:虚拟元素法( VEM) 是一个非常有效的框架, 用于设计与椭圆部分差异方程式解决方案具有高度全球规律性的数字近似值。 在本文中, 我们用符合的、 有限的维维次空间$H ⁇ p_ 2} (\ OMega) 来审查这种近近似值的构造。 美元1美元和美元2美元是两个整数, 例如, 美元2\ 2\ geq p_ 1\ geq 1 和 $\ omega\ in R% 2$ 是计算域。 抽象的趋同结果以一个适当定义的能源规范来显示。 讨论空间配方和主要方面, 如自由度的选择和单解度等, 并提供与全球高度常态的各种实际案例相对应的具体例子。 最后, 虚拟元素空间“ 强化” 配制的构建过程也在详细讨论之中, 并有证据证明“ 常规” 空间和“ 强化” 空间的维度” 和“ 强化” 空间的维值是同一程度的虚拟要素功能。