项目名称: 氢化对硅烯及硅烯纳米条带电子输运性质的调制

项目编号: No.11304264

项目类型: 青年科学基金项目

立项/批准年度: 2014

项目学科: 数理科学和化学

项目作者: 肖化平

作者单位: 湘潭大学

项目金额: 25万元

中文摘要: 作为重要的类石墨烯材料,硅烯具有高载流子迁移率、量子自旋霍尔效应等优异的物理性质,以及结构和制备工艺与传统硅工艺匹配的优点,是制备微纳电子器件的理想材料之一。最近硅烯在Ag(111)和Ag(110)衬底上的成功制备引起了人们的极大关注。对其电子输运性质进行可控的调制是硅烯器件化应用的基础。由于硅烯费米能级附近的电子态主要来自π电子的贡献,表面氢化是一种调制硅烯电子结构和输运性质的有效手段,然而,目前尚无有序氢化对硅烯和硅烯纳米条带电输运和自旋输运性质以及功函数调制的相关研究。本项目拟采用第一性原理与非平衡格林函数相结合的方法研究硅烯和硅烯纳米条带电子输运和自旋输运性质以及功函数依赖于有序分区氢化的浓度、修饰位置以及传输方向的变化规律,解释相关的物理机制,并建立调制硅烯电子输运和自旋输运的有效方案,为硅烯在微纳电子器件中的实际应用提供理论基础。

中文关键词: 硅烯;类硅烯;二维材料;电子结构;输运性质

英文摘要: Silicene, one of graphene-like materials, has excellent physical properties (such as high carrier mobility, quantum spin Hall effect, etc) and is one of the ideal materials for the preparation of micro-nano electronic devices. Recent experiments have shown that it is possible to grow Silicene on Ag(110) and Ag(111) substrates. This has attracted much attention because of the compatibility of these structures and processes with conventional Si-CMOS technology. In order to improve the value of the practical application of the Silicene, the modulations of its electronic transport properties is critical. As the electron states of Silicene near the Fermi level are mainly from the contribution of the π-electron, surface hydrogenation would be an effective mean to modulate the electronic structure and transport properties. However, there is less research about the modulations of the charged transport and spin transport properties by means of ordered hydrogenation. This project intends to combine the first-principles method and non-equilibrium Green function method to study the properties of the charged transport and spin transport of Silicene and Silicene nanoribbons and how the work function is dependent on the concentration of the orderly partition hydrogenation, modified location and the variation of the transmissio

英文关键词: Silicene;Silicene-like;two-dimensional materials;electronic structure;transport properties

成为VIP会员查看完整内容
0

相关内容

专知会员服务
51+阅读 · 2021年10月16日
专知会员服务
103+阅读 · 2021年8月23日
专知会员服务
31+阅读 · 2021年5月7日
【经典书】信息论原理,774页pdf
专知会员服务
254+阅读 · 2021年3月22日
【2021新书】流形几何结构,322页pdf
专知会员服务
53+阅读 · 2021年2月22日
百度事件图谱技术与应用
专知会员服务
58+阅读 · 2020年12月30日
专知会员服务
21+阅读 · 2020年9月14日
你的哪类电子产品换新频率最高?
ZEALER订阅号
0+阅读 · 2022年1月11日
我的信号是由核辐射传输的,金属屏蔽都挡不住
机器之心
0+阅读 · 2021年11月24日
【材料课堂】TEM复杂电子衍射花样的标定原理
材料科学与工程
39+阅读 · 2019年4月12日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年4月19日
Arxiv
0+阅读 · 2022年4月17日
Challenges for Open-domain Targeted Sentiment Analysis
Deep Face Recognition: A Survey
Arxiv
18+阅读 · 2019年2月12日
Self-Driving Cars: A Survey
Arxiv
41+阅读 · 2019年1月14日
小贴士
相关VIP内容
专知会员服务
51+阅读 · 2021年10月16日
专知会员服务
103+阅读 · 2021年8月23日
专知会员服务
31+阅读 · 2021年5月7日
【经典书】信息论原理,774页pdf
专知会员服务
254+阅读 · 2021年3月22日
【2021新书】流形几何结构,322页pdf
专知会员服务
53+阅读 · 2021年2月22日
百度事件图谱技术与应用
专知会员服务
58+阅读 · 2020年12月30日
专知会员服务
21+阅读 · 2020年9月14日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
微信扫码咨询专知VIP会员