In this paper, we propose a new deep image compression framework called Complexity and Bitrate Adaptive Network (CBANet), which aims to learn one single network to support variable bitrate coding under different computational complexity constraints. In contrast to the existing state-of-the-art learning based image compression frameworks that only consider the rate-distortion trade-off without introducing any constraint related to the computational complexity, our CBANet considers the trade-off between the rate and distortion under dynamic computational complexity constraints. Specifically, to decode the images with one single decoder under various computational complexity constraints, we propose a new multi-branch complexity adaptive module, in which each branch only takes a small portion of the computational budget of the decoder. The reconstructed images with different visual qualities can be readily generated by using different numbers of branches. Furthermore, to achieve variable bitrate decoding with one single decoder, we propose a bitrate adaptive module to project the representation from a base bitrate to the expected representation at a target bitrate for transmission. Then it will project the transmitted representation at the target bitrate back to that at the base bitrate for the decoding process. The proposed bit adaptive module can significantly reduce the storage requirement for deployment platforms. As a result, our CBANet enables one single codec to support multiple bitrate decoding under various computational complexity constraints. Comprehensive experiments on two benchmark datasets demonstrate the effectiveness of our CBANet for deep image compression.


翻译:在本文中,我们提出一个新的深层图像压缩框架,称为复杂度和比特拉特适应网络(CBANet),目的是学习一个单一的网络,以支持不同计算复杂度制约下的可变比特编码。与现有最新的基于学习的基于图像压缩框架相比,这些框架只考虑比率扭曲交易,而没有引入与计算复杂度相关的任何限制,我们的CBANet则考虑在动态计算复杂度制约下在比率和扭曲之间的权衡。具体地说,为了在各种计算复杂度制约下用单一解码器解码这些图像,我们提出了一个新的多分支复杂度适应模块,其中每个分支只能占用拆译器计算预算的一小部分。与现有最新的基于学习的基于图像压缩框架相比,这些基于不同视觉的图像压缩框架只能通过使用不同数目的分支来轻易生成。此外,为了用一个单一的解译器实现可变比特解码解码解码,我们提议的一个比特适应模块,从一个基点点比特拉特,到一个目标比特拉特传输。然后,我们将预测在目标比特拉特的配置到一个基比特拉特的图像配置到一个比特拉特的配置到比特拉后支持, 用于一个基础的比特比特的模型的比特的模型, 将演示结果。 将一个用于推进的比特拉制的重新定位的模型,为我们一个比代算结果。

0
下载
关闭预览

相关内容

CC在计算复杂性方面表现突出。它的学科处于数学与计算机理论科学的交叉点,具有清晰的数学轮廓和严格的数学格式。官网链接:https://link.springer.com/journal/37
零样本文本分类,Zero-Shot Learning for Text Classification
专知会员服务
96+阅读 · 2020年5月31日
专知会员服务
110+阅读 · 2020年3月12日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Deep Compression/Acceleration:模型压缩加速论文汇总
极市平台
14+阅读 · 2019年5月15日
ICLR2019最佳论文出炉
专知
12+阅读 · 2019年5月6日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
gan生成图像at 1024² 的 代码 论文
CreateAMind
4+阅读 · 2017年10月31日
【推荐】视频目标分割基础
机器学习研究会
9+阅读 · 2017年9月19日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
3+阅读 · 2017年10月1日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Deep Compression/Acceleration:模型压缩加速论文汇总
极市平台
14+阅读 · 2019年5月15日
ICLR2019最佳论文出炉
专知
12+阅读 · 2019年5月6日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
gan生成图像at 1024² 的 代码 论文
CreateAMind
4+阅读 · 2017年10月31日
【推荐】视频目标分割基础
机器学习研究会
9+阅读 · 2017年9月19日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员