We present a framework for designing differentially private (DP) mechanisms for binary functions via a graph representation of datasets. Datasets are nodes in the graph and any two neighboring datasets are connected by an edge. The true binary function we want to approximate assigns a value (or true color) to a dataset. Randomized DP mechanisms are then equivalent to randomized colorings of the graph. A key notion we use is that of the boundary of the graph. Any two neighboring datasets assigned a different true color belong to the boundary. Under this framework, we show that fixing the mechanism behavior at the boundary induces a unique optimal mechanism. Moreover, if the mechanism is to have a homogeneous behavior at the boundary, we present a closed expression for the optimal mechanism, which is obtained by means of a \emph{pullback} operation on the optimal mechanism of a line graph. For balanced mechanisms, not favoring one binary value over another, the optimal $(\epsilon,\delta)$-DP mechanism takes a particularly simple form, depending only on the minimum distance to the boundary, on $\epsilon$, and on $\delta$.
翻译:我们提出了一个框架,用于通过一组数据集的图形表示来设计二进制(DP)机制。 数据集是图形中的节点, 任何两个相邻的数据集都是用边缘连接的。 我们想要近似给数据集分配值( 或真实颜色) 的真正二进制函数。 随机化的 DP 机制相当于图形的随机颜色。 我们使用的关键概念是图形的边界边界。 任何两个相邻的数据集都指定了不同的真实颜色。 在此框架内, 我们显示, 确定边界上的机制行为会引发一个独特的最佳机制。 此外, 如果该机制要在边界上有相同的行为, 我们为最佳机制提供一个封闭的表达方式, 这个表达方式是通过线形图的最佳机制的 emph{ pull} 操作获得的。 对于平衡机制来说, 不偏重于另一个的二进制值, 最佳的 $( epsilon,\delta) $- DP 机制将特别简单的形式, 仅取决于边界的最小距离, $\\ deepsellon, 和 $ta 。