Designing truthful, revenue maximizing auctions is a core problem of auction design. Multi-item settings have long been elusive. Recent work (arXiv:1706.03459) introduces effective deep learning techniques to find such auctions for the prior-dependent setting, in which distributions about bidder preferences are known. One remaining problem is to obtain priors in a way that excludes the possibility of manipulating the resulting auctions. Using techniques from differential privacy for the construction of approximately truthful mechanisms, we modify the RegretNet approach to be applicable to the prior-free setting. In this more general setting, no distributional information is assumed, but we trade this property for worse performance. We present preliminary empirical results and qualitative analysis for this work in progress.
翻译:设计真实性、收入最大化拍卖是拍卖设计的一个核心问题。多项目设置长期以来一直难以找到。最近的工作(arXiv:1706.034559)引入了有效的深层次学习技术,为事先依赖的环境下寻找此类拍卖,因为事先了解投标人偏好的分配情况。另一个问题是如何获得事先经验,从而排除操纵由此产生的拍卖的可能性。我们利用来自不同隐私的技术来构建大致真实的机制,我们修改RegretNet方法,使之适用于前一种自由环境。在这一更为笼统的环境下,没有假定任何分配信息,但我们用这种财产换取更差的业绩。我们为这项工作正在进行中的初步经验结果和定性分析。