The Gaussian kernel plays a central role in machine learning, uncertainty quantification and scattered data approximation, but has received relatively little attention from a numerical analysis standpoint. The basic problem of finding an algorithm for efficient numerical integration of functions reproduced by Gaussian kernels has not been fully solved. In this article we construct two classes of algorithms that use $N$ evaluations to integrate $d$-variate functions reproduced by Gaussian kernels and prove the exponential or super-algebraic decay of their worst-case errors. In contrast to earlier work, no constraints are placed on the length-scale parameter of the Gaussian kernel. The first class of algorithms is obtained via an appropriate scaling of the classical Gauss-Hermite rules. For these algorithms we derive lower and upper bounds on the worst-case error of the forms $\exp(-c_1 N^{1/d}) N^{1/(4d)}$ and $\exp(-c_2 N^{1/d}) N^{-1/(4d)}$, respectively, for positive constants $c_1 > c_2$. The second class of algorithms we construct is more flexible and uses worst-case optimal weights for points that may be taken as a nested sequence. For these algorithms we derive upper bounds of the form $\exp(-c_3 N^{1/(2d)})$ for a positive constant $c_3$.


翻译:Gausian 内核在机器学习、不确定性量化和分散的数据近似方面发挥着核心作用,但从数字分析的角度来说,却相对较少受到注意。 找到一种算法, 将高山内核复制的函数有效数字整合的基本问题尚未完全解决。 在本条中, 我们构建了两类算法, 使用美元评价来整合高山内核复制的美元差异函数, 并证明其最坏情况错误的指数或超级数值衰减。 与先前的工作相比, 高山内核的长度参数没有受到任何限制。 第一类算法是通过对古典高山内核规则的适当缩放来获得的。 对于这些算法, 我们用最坏情况错误的 $(- c_ 1 n% 1 n1/ d} N% 1 (4d} 美元) 和 $\ c (2 n% 1 n_ 1/ 1/ ) 第二条 内核内核内核内核的长度参数。 最坏的算法级中, 我们用最坏的正正值2 3 c_ 级的正数 级计算, 最硬的正数级的基数级, 我们用最硬的正数级的正数级的C2_ brod_ bassal_ bassal_ bal_ bassal_ bal_ bassal_ bal_ bal_ bal_ bal_ bal_ bal_ bal_ bassal_ bal_ bal_ bal_ bal_ bal_ bal_ bal_ bal_ rod_ sal_ rod_ bs, 我们, rod_ sal_ sal_ sal_ sal_ sal_ sal_ sal_ sal_ sal_ sal_ sal_ sal_ sal_ sal_ sal_ sal_ sal_ sald_ sald_ sald_ salbalbalbalbalbalbalbalbalbalbsalalalsalsalsalsalsalsalsalsalsalsalsalsalsalsalsalsalsals, 我们, 我们, 我们, al__c_c_c_c_c_

0
下载
关闭预览

相关内容

【图与几何深度学习】Graph and geometric deep learning,49页ppt
专知会员服务
42+阅读 · 2020年12月18日
专知会员服务
50+阅读 · 2020年12月14日
神经常微分方程教程,50页ppt,A brief tutorial on Neural ODEs
专知会员服务
71+阅读 · 2020年8月2日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
零样本文本分类,Zero-Shot Learning for Text Classification
专知会员服务
95+阅读 · 2020年5月31日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
动物脑的好奇心和强化学习的好奇心
CreateAMind
10+阅读 · 2019年1月26日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
9+阅读 · 2021年4月8日
Arxiv
7+阅读 · 2020年6月29日
SepNE: Bringing Separability to Network Embedding
Arxiv
3+阅读 · 2019年2月26日
Arxiv
3+阅读 · 2018年2月24日
VIP会员
相关VIP内容
【图与几何深度学习】Graph and geometric deep learning,49页ppt
专知会员服务
42+阅读 · 2020年12月18日
专知会员服务
50+阅读 · 2020年12月14日
神经常微分方程教程,50页ppt,A brief tutorial on Neural ODEs
专知会员服务
71+阅读 · 2020年8月2日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
零样本文本分类,Zero-Shot Learning for Text Classification
专知会员服务
95+阅读 · 2020年5月31日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
动物脑的好奇心和强化学习的好奇心
CreateAMind
10+阅读 · 2019年1月26日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员