We give a new randomized distributed algorithm for the $\Delta+1$-list coloring problem. The algorithm and its analysis dramatically simplify the previous best result known of Chang, Li, and Pettie [SICOMP 2020]. This allows for numerous refinements, and in particular, we can color all $n$-node graphs of maximum degree $\Delta \ge \log^{2+\Omega(1)} n$ in $O(\log^* n)$ rounds. The algorithm works in the CONGEST model, i.e., it uses only $O(\log n)$ bits per message for communication. On low-degree graphs, the algorithm shatters the graph into components of size $\operatorname{poly}(\log n)$ in $O(\log^* \Delta)$ rounds, showing that the randomized complexity of $\Delta+1$-list coloring in CONGEST depends inherently on the deterministic complexity of related coloring problems.


翻译:我们为$Delta+1$列表的彩色问题提供了一个新的随机分布算法。 算法及其分析极大地简化了先前已知的张、 李和佩蒂[SICOMP 2020] 的最佳结果。 这可以进行许多改进, 特别是, 我们可以用$O( log)\\\ ge\ log\\\ ⁇ 2\\\ \\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ 美元来显示最大度的彩色色的无序复杂性。 。 在 CONEST 模型中,, 它只使用$O( \ \ n) 每条信息只使用$O\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \

0
下载
关闭预览

相关内容

神经常微分方程教程,50页ppt,A brief tutorial on Neural ODEs
专知会员服务
71+阅读 · 2020年8月2日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
52+阅读 · 2019年9月29日
word2Vec总结
AINLP
3+阅读 · 2019年11月2日
分布式并行架构Ray介绍
CreateAMind
9+阅读 · 2019年8月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
已删除
德先生
53+阅读 · 2019年4月28日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
lightgbm algorithm case of kaggle(上)
R语言中文社区
8+阅读 · 2018年3月20日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
0+阅读 · 2021年6月24日
Arxiv
0+阅读 · 2021年6月22日
VIP会员
相关资讯
word2Vec总结
AINLP
3+阅读 · 2019年11月2日
分布式并行架构Ray介绍
CreateAMind
9+阅读 · 2019年8月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
已删除
德先生
53+阅读 · 2019年4月28日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
lightgbm algorithm case of kaggle(上)
R语言中文社区
8+阅读 · 2018年3月20日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员