Images captured in weak illumination conditions will seriously degrade the image quality. Solving a series of degradation of low-light images can effectively improve the visual quality of the image and the performance of high-level visual tasks. In this paper, we propose a novel Real-low to Real-normal Network for low-light image enhancement, dubbed R2RNet, based on the Retinex theory, which includes three subnets: a Decom-Net, a Denoise-Net, and a Relight-Net. These three subnets are used for decomposing, denoising, and contrast enhancement, respectively. Unlike most previous methods trained on synthetic images, we collect the first Large-Scale Real-World paired low/normal-light images dataset (LSRW dataset) for training. Our method can properly improve the contrast and suppress noise simultaneously. Extensive experiments on publicly available datasets demonstrate that our method outperforms the existing state-of-the-art methods by a large margin both quantitatively and visually. And we also show that the performance of the high-level visual task (\emph{i.e.} face detection) can be effectively improved by using the enhanced results obtained by our method in low-light conditions. Our codes and the LSRW dataset are available at: https://github.com/abcdef2000/R2RNet.
翻译:在微弱的光化条件下摄取的图像将严重降低图像质量。 解决一系列低光图像的降解可以有效提高图像的视觉质量和高级视觉任务的性能。 在本文中,我们建议根据Retinex 理论, 包括三个子网的Retinex 理论, 被称为 R2RNet, 其中包括一个 Decom- Net、 Denoise- Net 和一个 Reight- Net 。 这三个子网将分别用于分解、 脱色和对比增强。 与以前在合成图像方面培训的大多数方法不同, 我们收集了第一个大型真实世界配对的低/ 正常光的图像数据集( LSRW 数据集 ) 。 我们的方法可以适当改善对比和同时抑制噪音。 对公开的数据集进行的广泛实验表明, 我们的方法在数量上和视觉上都比现有的状态方法更差。 我们还表明, 高水平的视觉任务(\ rempregreal {i) 的性能通过我们的低光度检测方式改进我们获得的数据。 。 我们的低光谱/ 。 我们的图像检测结果可以有效通过我们得到的 。