In this work, we propose a special cascade network for image segmentation, which is based on the U-Net networks as building blocks and the idea of the iterative refinement. The model was mainly applied to achieve higher recognition quality for the task of finding borders of the optic disc and cup, which are relevant to the presence of glaucoma. Compared to a single U-Net and the state-of-the-art methods for the investigated tasks, very high segmentation quality has been achieved without a need for increasing the volume of datasets. Our experiments include comparison with the best-known methods on publicly available databases DRIONS-DB, RIM-ONE v.3, DRISHTI-GS, and evaluation on a private data set collected in collaboration with University of California San Francisco Medical School. The analysis of the architecture details is presented, and it is argued that the model can be employed for a broad scope of image segmentation problems of similar nature.


翻译:在这项工作中,我们建议建立一个特别的图像分割级联网络,以U-Net网络为基础,作为构件和迭接改进的构想,该模型主要用于在寻找光碟和杯子的边界方面实现更高的承认质量,这些边界与光碟和杯子的存在有关。与单一的U-Net和调查任务的最先进方法相比,非常高的分割质量已经实现,不需要增加数据集的数量。我们的实验包括比较公开数据库中最著名的方法DDROME-DB、RIM-ONE v.3、DRISHTI-GS,以及评价与加利福尼亚圣弗朗西斯科大学医学院合作收集的一套私人数据集。对结构细节的分析提出,并主张该模型可用于类似性质的图像分割问题的广泛范围。

3
下载
关闭预览

相关内容

图像分割就是把图像分成若干个特定的、具有独特性质的区域并提出感兴趣目标的技术和过程。它是由图像处理到图像分析的关键步骤。 所谓图像分割指的是根据灰度、颜色、纹理和形状等特征把图像划分成若干互不交迭的区域,并使这些特征在同一区域内呈现出相似性,而在不同区域间呈现出明显的差异性。

知识荟萃

精品入门和进阶教程、论文和代码整理等

更多

查看相关VIP内容、论文、资讯等
【ICLR-2020】网络反卷积,NETWORK DECONVOLUTION
专知会员服务
38+阅读 · 2020年2月21日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
30+阅读 · 2019年10月17日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
计算机 | 入门级EI会议ICVRIS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年6月24日
CCF A类 | 顶级会议RTSS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年4月17日
计算机类 | ISCC 2019等国际会议信息9条
Call4Papers
5+阅读 · 2018年12月25日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
《pyramid Attention Network for Semantic Segmentation》
统计学习与视觉计算组
44+阅读 · 2018年8月30日
计算机视觉的不同任务
专知
5+阅读 · 2018年8月27日
深度学习医学图像分析文献集
机器学习研究会
18+阅读 · 2017年10月13日
Deep Co-Training for Semi-Supervised Image Segmentation
VIP会员
相关VIP内容
【ICLR-2020】网络反卷积,NETWORK DECONVOLUTION
专知会员服务
38+阅读 · 2020年2月21日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
30+阅读 · 2019年10月17日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
相关资讯
计算机 | 入门级EI会议ICVRIS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年6月24日
CCF A类 | 顶级会议RTSS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年4月17日
计算机类 | ISCC 2019等国际会议信息9条
Call4Papers
5+阅读 · 2018年12月25日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
《pyramid Attention Network for Semantic Segmentation》
统计学习与视觉计算组
44+阅读 · 2018年8月30日
计算机视觉的不同任务
专知
5+阅读 · 2018年8月27日
深度学习医学图像分析文献集
机器学习研究会
18+阅读 · 2017年10月13日
Top
微信扫码咨询专知VIP会员