Breaking symmetries is a popular way of speeding up the branch-and-bound method for symmetric integer programs. We study symmetry breaking polyhedra, more precisely, fundamental domains. Our long-term goal is to understand the relationship between the complexity of such polyhedra and their symmetry breaking ability. Borrowing ideas from geometric group theory, we provide structural properties that relate the action of the group to the geometry of the facets of fundamental domains. Inspired by these insights, we provide a new generalized construction for fundamental domains, which we call generalized Dirichlet domain (GDD). Our construction is recursive and exploits the coset decomposition of the subgroups that fix given vectors in $\mathbb{R}^n$. We use this construction to analyze a recently introduced set of symmetry breaking inequalities by Salvagnin (2018) and Liberti and Ostrowski (2014), called Schreier-Sims inequalities. In particular, this shows that every permutation group admits a fundamental domain with less than $n$ facets. We also show that this bound is tight. Finally, we prove that the Schreier-Sims inequalities can contain an exponential number of isomorphic binary vectors for a given permutation group $G$, which shows evidence of the lack of symmetry breaking effectiveness of this fundamental domain. Conversely, a suitably constructed GDD for $G$ has linearly many inequalities and contains unique representatives for isomorphic binary vectors.
翻译:断断对称是加速对称整数程序的分支和约束方法的一种流行方式。 我们研究对称断裂多面体, 更精确地说, 基本领域。 我们的长期目标是理解多面体的复杂性和对称断裂能力之间的关系。 我们从几何组理论中借入想法, 我们提供结构属性, 将该组的行动与基本领域方方面面的几何联系起来。 受这些洞察启发, 我们为基本域提供了一种新的通用构建, 我们称之为普世 Dirichlet 域( GDD) 。 我们的构造是循环性的, 并探索了用来修正 $\ mathb{R ⁇ n 的矢量的组合的共振变异性。 我们用这个构造来分析最近推出的一组对称断裂的不平等, 由Salvagnin( 2018年) 和 Liberti 和 Ostrowski( 3⁄4) 等组成。 特别是, 我们的每个硬度组都承认一个基本域, 低于$ 的平面。 我们还显示这个直径的平面值代表的平面 显示这个直径的平面的平面 。 最后显示, 我们能够显示一个直径的平面的平面的平面的平面 显示一个直径的平的平的平的平。