A matrix is incomplete when some of its entries are missing. A Robinson incomplete symmetric matrix is an incomplete symmetric matrix whose non-missing entries do not decrease along rows and columns when moving toward the diagonal. A Strong-Robinson incomplete symmetric matrix is an incomplete symmetric matrix $A$ such that $a_{k,l} \geq a_{i,j}$ if $a_{i,j}$ and $a_{k,l}$ are two non-missing entries of $A$ and $i\leq k \leq l \leq j$. On the other hand, an incomplete symmetric matrix is Strong-Robinsonian if there is a simultaneous reordering of its rows and columns that produces a Strong-Robinson matrix. In this document, we first show that there is an incomplete Robinson matrix which is not Strong-Robinsonian. Therefore, these two definitions are not equivalent. Secondly, we study the recognition problem for Strong-Robinsonian incomplete matrices. It is known that recognition of incomplete Robinsonian matrices is NP-Complete. We show that the recognition of incomplete Strong-Robinsonian matrices is also NP-Complete. However, we show that recognition of Strong-Robinsonian matrices can be parametrized with respect to the number of missing entries. Indeed, we present an $O(|w|^bn^2)$ recognition algorithm for Strong-Robinsonian matrices, where $b$ is the number of missing entries, $n$ is the size of the matrix, and $|w|$ is the number of different values in the matrix.
翻译:当一些条目缺失时, 矩阵就不完整。 鲁滨逊不完整的对称矩阵是一个不完整的对称矩阵, 不缺条目不会在行和列上减少。 强罗宾逊不完整的对称矩阵是一个不完整的对称矩阵 $A 美元, 这样美元、 美元、 美元、 美元、 美元和 美元、 美元, 美元是不完整的对称矩阵。 鲁滨逊不完整的对称矩阵是一个不完整的对称矩阵 $A $, 美元和 美元 列克( 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元。 另一方面, 一个不完整的对等矩阵是强的 robinson 美元。 如果同时重新排列其行和列行的对 美元, 我们首先显示一个不完整的 Robinson 美元 基质的识别问题, 则显示对 Rbinson 基质的识别 。