We produce a class of $\omega$-categorical structures with finite signature by applying a model-theoretic construction -- a refinement of the Hrushosvki-encoding -- to $\omega$-categorical structures in a possibly infinite signature. We show that the encoded structures retain desirable algebraic properties of the original structures, but that the constraint satisfaction problems (CSPs) associated with these structures can be badly behaved in terms of computational complexity. This method allows us to systematically generate $\omega$-categorical templates whose CSPs are complete for a variety of complexity classes of arbitrarily high complexity, and $\omega$-categorical templates that show that membership in any given complexity class cannot be expressed by a set of identities on the polymorphisms. It moreover enables us to prove that recent results about the relevance of topology on polymorphism clones of $\omega$-categorical structures also apply for CSP templates, i.e., structures in a finite language. Finally, we obtain a concrete algebraic criterion which could constitute a description of the delineation between tractability and NP-hardness in the dichotomy conjecture for first-order reducts of finitely bounded homogeneous structures.
翻译:我们通过对可能无限的签名,将模型-理论结构(Hrushosvki-encoding)进行精细的精密度和美元-罗马元-分类结构进行精细化,从而产生一组具有有限签名特征的“美元”分类结构。我们显示,编码结构保留了原始结构中可取的代数特性,但与这些结构相关的约束性满意度问题(CSP)在计算复杂性方面可能表现不善。这种方法使我们能够系统地产生“美元”分类结构,其CSP在任意高度复杂的各种类别中已经完成,而$-罗马元-分类结构显示,任何特定复杂类别中的成员资格不能通过多种形态的一套特征来表达。此外,它使我们能够证明,最近关于多形态学与美元-罗马元-美元-类别克隆的关系的结果也适用于CSP模板,即限定语言的结构。最后,我们获得了一个具体的“数字”和“分类”分类模板,该标准在任何特定复杂类别中的属性不能以多种形态的特征来表达。此外,它使我们能够证明,最近关于多形态学与多形态的克隆克隆相关的表面结构(美元-分级结构)相关性的描述。