An AI-ML-powered quality engineering approach uses AI-ML to enhance software quality assessments by predicting defects. Existing ML models struggle with noisy data types, imbalances, pattern recognition, feature extraction, and generalization. To address these challenges, we develop a new model, Adaptive Differential Evolution (ADE) based Quantum Variational Autoencoder-Transformer (QVAET) Model (ADE-QVAET). ADE combines with QVAET to obtain high-dimensional latent features and maintain sequential dependencies, resulting in enhanced defect prediction accuracy. ADE optimization enhances model convergence and predictive performance. ADE-QVAET integrates AI-ML techniques such as tuning hyperparameters for scalable and accurate software defect prediction, representing an AI-ML-driven technology for quality engineering. During training with a 90% training percentage, ADE-QVAET achieves high accuracy, precision, recall, and F1-score of 98.08%, 92.45%, 94.67%, and 98.12%, respectively, when compared to the Differential Evolution (DE) ML model.
翻译:一种由人工智能-机器学习驱动的质量工程方法,利用AI-ML技术通过缺陷预测来增强软件质量评估。现有机器学习模型在处理噪声数据类型、类别不平衡、模式识别、特征提取和泛化能力方面存在困难。为应对这些挑战,我们开发了一种新模型——基于自适应差分进化的量子变分自编码器-Transformer模型(ADE-QVAET)。ADE与QVAET相结合,能够获取高维潜在特征并保持序列依赖性,从而提升缺陷预测准确率。ADE优化增强了模型收敛性和预测性能。ADE-QVAET整合了AI-ML技术,例如通过超参数调优实现可扩展且精确的软件缺陷预测,代表了质量工程领域AI-ML驱动的技术范式。在90%训练比例的条件下,相较于差分进化(DE)机器学习模型,ADE-QVAET在训练过程中分别实现了98.08%的准确率、92.45%的精确率、94.67%的召回率以及98.12%的F1分数。