Seeking high-quality representations with latent variable models (LVMs) to reveal the intrinsic correlation between neural activity and behavior or sensory stimuli has attracted much interest. In the study of the biological visual system, naturalistic visual stimuli are inherently high-dimensional and time-dependent, leading to intricate dynamics within visual neural activity. However, most work on LVMs has not explicitly considered neural temporal relationships. To cope with such conditions, we propose Time-Evolving Visual Dynamical System (TE-ViDS), a sequential LVM that decomposes neural activity into low-dimensional latent representations that evolve over time. To better align the model with the characteristics of visual neural activity, we split latent representations into two parts and apply contrastive learning to shape them. Extensive experiments on synthetic datasets and real neural datasets from the mouse visual cortex demonstrate that TE-ViDS achieves the best decoding performance on naturalistic scenes/movies, extracts interpretable latent trajectories that uncover clear underlying neural dynamics, and provides new insights into differences in visual information processing between subjects and between cortical regions. In summary, TE-ViDS is markedly competent in extracting stimulus-relevant embeddings from visual neural activity and contributes to the understanding of visual processing mechanisms. Our codes are available at https://github.com/Grasshlw/Time-Evolving-Visual-Dynamical-System.


翻译:利用潜变量模型(LVMs)寻求高质量表征以揭示神经活动与行为或感官刺激之间的内在关联,已引起广泛关注。在生物视觉系统的研究中,自然视觉刺激本质上是高维且时间依赖的,导致视觉神经活动内部存在复杂的动态特性。然而,大多数关于LVMs的研究并未明确考虑神经活动的时间关联。为应对此类情况,我们提出了时间演化视觉动态系统(TE-ViDS),这是一种序列LVM,可将神经活动分解为随时间演化的低维潜在表征。为了更好地使模型与视觉神经活动的特性相匹配,我们将潜在表征分为两部分,并应用对比学习对其进行塑造。在合成数据集以及来自小鼠视觉皮层的真实神经数据集上进行的大量实验表明,TE-ViDS在自然场景/电影上实现了最佳的解码性能,提取了可解释的潜在轨迹,揭示了清晰的底层神经动态,并为理解不同个体之间以及不同皮层区域之间视觉信息处理的差异提供了新的见解。总之,TE-ViDS在从视觉神经活动中提取刺激相关嵌入方面表现出显著能力,并有助于理解视觉处理机制。我们的代码可在 https://github.com/Grasshlw/Time-Evolving-Visual-Dynamical-System 获取。

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
VIP会员
相关资讯
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员