Seeking high-quality representations with latent variable models (LVMs) to reveal the intrinsic correlation between neural activity and behavior or sensory stimuli has attracted much interest. In the study of the biological visual system, naturalistic visual stimuli are inherently high-dimensional and time-dependent, leading to intricate dynamics within visual neural activity. However, most work on LVMs has not explicitly considered neural temporal relationships. To cope with such conditions, we propose Time-Evolving Visual Dynamical System (TE-ViDS), a sequential LVM that decomposes neural activity into low-dimensional latent representations that evolve over time. To better align the model with the characteristics of visual neural activity, we split latent representations into two parts and apply contrastive learning to shape them. Extensive experiments on synthetic datasets and real neural datasets from the mouse visual cortex demonstrate that TE-ViDS achieves the best decoding performance on naturalistic scenes/movies, extracts interpretable latent trajectories that uncover clear underlying neural dynamics, and provides new insights into differences in visual information processing between subjects and between cortical regions. In summary, TE-ViDS is markedly competent in extracting stimulus-relevant embeddings from visual neural activity and contributes to the understanding of visual processing mechanisms. Our codes are available at https://github.com/Grasshlw/Time-Evolving-Visual-Dynamical-System.
翻译:暂无翻译