We apply the Proper Orthogonal Decomposition (POD) method for the efficient simulation of several scenarios undergone by Micro-Electro-Mechanical-Systems, involving nonlinearites of geometric and electrostatic nature. The former type of nonlinearity, associated to the large displacements of the devices, leads to polynomial terms up to cubic order that are reduced through exact projection onto a low-dimensional subspace spanned by the Proper Orthogonal Modes (POMs). On the contrary, electrostatic nonlinearities are modeled resorting to precomputed manifolds in terms of the amplitudes of the electrically active POMs. We extensively test the reliability of the assumed linear trial space in challenging applications focusing on resonators, micromirrors and arches also displaying internal resonances. We discuss several options to generate the matrix of snapshots using both classical time marching schemes and more advanced Harmonic Balance (HB) approaches. Furthermore, we propose a comparison between the periodic orbits computed with POD and the invariant manifold approximated with Direct Parametrization approaches, further stressing the reliability of the technique and its remarkable predictive capabilities, e.g., in terms of estimation of the frequency response function of selected output quantities of interest.
翻译:我们采用了适当的正弦分解法(POD)来有效模拟微电子-机械-系统-系统-系统所经历的几种假设情景,其中涉及非线性几何和静电性质。前非线性非线性类型,与设备的大规模移位有关,导致多线性至立方顺序,通过精确投射到由适当正弦调调调调模式(POMS)所设计的低维次空间范围而减少。相反,我们用电子非线性电平非线性模型来模拟电子活跃的POMs的振幅学模型。我们广泛测试假设线性试验空间的可靠性,以挑战性应用为焦点,以共振器、微镜和拱门为主,同时展示内部共振;我们讨论了利用古典时间进进制和较先进的调平衡(HB)方法生成闪光矩阵的若干备选方案。此外,我们提议对与POD计算的定期轨道和在电动POD的可变性方位性方位相近数进行对比。我们广泛测试假定线性试验空间的可靠性,同时强调其预测性、预测性能的精确性、预测性、预测性、预测性、精确性、精确性、精确性、精确性、精确性、精确性、精确性、精确性、精确性、精确性、精确性、精确性、精确性、精确性、精确性、精确性、精确性、精确性、精确性、精确性、精确性、精确性、精确性、精确性、精确性、精确性、精确性、精确性、精确性、精确性、精确性、精确性、精确性、精确性、精确性、精确性、精确性、精确性、精确性、精确性等等能等等等等等等等等等等等等等等等等等等等等等等等等等等等等等等等等等方法。