We propose ScheduleNet, a RL-based real-time scheduler, that can solve various types of multi-agent scheduling problems. We formulate these problems as a semi-MDP with episodic reward (makespan) and learn ScheduleNet, a decentralized decision-making policy that can effectively coordinate multiple agents to complete tasks. The decision making procedure of ScheduleNet includes: (1) representing the state of a scheduling problem with the agent-task graph, (2) extracting node embeddings for agent and tasks nodes, the important relational information among agents and tasks, by employing the type-aware graph attention (TGA), and (3) computing the assignment probability with the computed node embeddings. We validate the effectiveness of ScheduleNet as a general learning-based scheduler for solving various types of multi-agent scheduling tasks, including multiple salesman traveling problem (mTSP) and job shop scheduling problem (JSP).


翻译:我们提议建立基于RL的实时调度系统,即调度网,以解决多种试剂的排期问题,我们将这些问题纳入半市场化的附带奖励(Makespan)和学习调度网,这是分散决策政策,可以有效协调多个代理商完成任务,表Net的决策程序包括:(1) 代表代理任务图中的排期问题状态,(2) 利用识别型图关注(TGA),为代理和任务节点提取节点嵌入节点,代理商和任务之间的重要关系信息,以及(3) 计算与计算节点嵌入的派任概率。我们验证了调度网作为解决各类多试剂排期任务,包括多销售员旅行问题和工作商店排期问题(JSP)的一般学习型排期的有效性。

0
下载
关闭预览

相关内容

Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
111+阅读 · 2020年5月15日
【斯坦福大学】Gradient Surgery for Multi-Task Learning
专知会员服务
47+阅读 · 2020年1月23日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
顶会论文 || 65篇"IJCAI"深度强化学习论文汇总
深度强化学习实验室
3+阅读 · 2020年3月15日
强化学习扫盲贴:从Q-learning到DQN
夕小瑶的卖萌屋
52+阅读 · 2019年10月13日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
carla 学习笔记
CreateAMind
9+阅读 · 2018年2月7日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Learning to Focus when Ranking Answers
Arxiv
5+阅读 · 2018年8月8日
Arxiv
11+阅读 · 2018年4月25日
VIP会员
相关资讯
顶会论文 || 65篇"IJCAI"深度强化学习论文汇总
深度强化学习实验室
3+阅读 · 2020年3月15日
强化学习扫盲贴:从Q-learning到DQN
夕小瑶的卖萌屋
52+阅读 · 2019年10月13日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
carla 学习笔记
CreateAMind
9+阅读 · 2018年2月7日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员