Given a family $S$ of $k$--subsets of $[n]$, its lower shadow $\Delta(S)$ is the family of $(k-1)$--subsets which are contained in at least one set in $S$. The celebrated Kruskal--Katona theorem gives the minimum cardinality of $\Delta(S)$ in terms of the cardinality of $S$. F\"uredi and Griggs (and M\"ors) showed that the extremal families for this shadow minimization problem in the Boolean lattice are unique for some cardinalities and asked for a general characterization of these extremal families. In this paper we prove a new combinatorial inequality from which yet another simple proof of the Kruskal--Katona theorem can be derived. The inequality can be used to obtain a characterization of the extremal families for this minimization problem, giving an answer to the question of F\"uredi and Griggs. Some known and new additional properties of extremal families can also be easily derived from the inequality.
翻译:给定一个 $[n]$ 中 $k$ 元素子集系 $S$,它的下沙 $\Delta(S)$ 是包含在 $S$ 中至少一个集合中的 $(k-1)$ 元素子集系。著名的 Kruskal-Katona 定理给出了 $\Delta(S)$ 的最小基数与 $S$ 的基数之间的关系。Füredi 和 Griggs(还有 Mörs)表明,这个下沙最小化问题在布尔算子的情况下极限族是唯一的,并询问了这些极限族的一般特征。在本文中,我们证明了一个新的组合不等式,可以推导出 Kruskal-Katona 定理的另一个简单的证明。该不等式可用于获得这种最小化问题的极限家族的特征,从而回答 Füredi 和 Griggs 的问题。此外,还可以轻松地推导出一些已知的和新的极限家族的附加属性。