Given a family $S$ of $k$--subsets of $[n]$, its lower shadow $\Delta(S)$ is the family of $(k-1)$--subsets which are contained in at least one set in $S$. The celebrated Kruskal--Katona theorem gives the minimum cardinality of $\Delta(S)$ in terms of the cardinality of $S$. F\"uredi and Griggs (and M\"ors) showed that the extremal families for this shadow minimization problem in the Boolean lattice are unique for some cardinalities and asked for a general characterization of these extremal families. In this paper we prove a new combinatorial inequality from which yet another simple proof of the Kruskal--Katona theorem can be derived. The inequality can be used to obtain a characterization of the extremal families for this minimization problem, giving an answer to the question of F\"uredi and Griggs. Some known and new additional properties of extremal families can also be easily derived from the inequality.


翻译:给定一个 $[n]$ 中 $k$ 元素子集系 $S$,它的下沙 $\Delta(S)$ 是包含在 $S$ 中至少一个集合中的 $(k-1)$ 元素子集系。著名的 Kruskal-Katona 定理给出了 $\Delta(S)$ 的最小基数与 $S$ 的基数之间的关系。Füredi 和 Griggs(还有 Mörs)表明,这个下沙最小化问题在布尔算子的情况下极限族是唯一的,并询问了这些极限族的一般特征。在本文中,我们证明了一个新的组合不等式,可以推导出 Kruskal-Katona 定理的另一个简单的证明。该不等式可用于获得这种最小化问题的极限家族的特征,从而回答 Füredi 和 Griggs 的问题。此外,还可以轻松地推导出一些已知的和新的极限家族的附加属性。

0
下载
关闭预览

相关内容

专知会员服务
77+阅读 · 2021年3月16日
专知会员服务
85+阅读 · 2020年12月5日
专知会员服务
124+阅读 · 2020年9月8日
GNN 新基准!Long Range Graph Benchmark
图与推荐
0+阅读 · 2022年10月18日
花好月圆人长久 不知“Offer”落谁手
微软招聘
0+阅读 · 2022年9月10日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
图机器学习 2.2-2.4 Properties of Networks, Random Graph
图与推荐
10+阅读 · 2020年3月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
自然语言处理 (三) 之 word embedding
DeepLearning中文论坛
19+阅读 · 2015年8月3日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2023年5月29日
Arxiv
0+阅读 · 2023年5月25日
Arxiv
11+阅读 · 2018年9月28日
VIP会员
相关资讯
GNN 新基准!Long Range Graph Benchmark
图与推荐
0+阅读 · 2022年10月18日
花好月圆人长久 不知“Offer”落谁手
微软招聘
0+阅读 · 2022年9月10日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
图机器学习 2.2-2.4 Properties of Networks, Random Graph
图与推荐
10+阅读 · 2020年3月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
自然语言处理 (三) 之 word embedding
DeepLearning中文论坛
19+阅读 · 2015年8月3日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员