Cosmological parameters encoding our current understanding of the expansion history of the Universe can be constrained by the accurate estimation of time delays arising in gravitationally lensed systems. We propose TD-CARMA, a Bayesian method to estimate cosmological time delays by modelling the observed and irregularly sampled light curves as realizations of a Continuous Auto-Regressive Moving Average (CARMA) process. Our model accounts for heteroskedastic measurement errors and microlensing, an additional source of independent extrinsic long-term variability in the source brightness. The CARMA formulation admits a linear state-space representation, that allows for efficient and scalable likelihood computation using the Kalman Filter. We obtain a sample from the joint posterior distribution of the model parameters using a nested sampling approach. This allows for "painless" Bayesian Computation, dealing with the expected multi-modality of the posterior distribution in a straightforward manner and not requiring the specification of starting values or an initial guess for the time delay, unlike existing methods. In addition, the proposed sampling procedure automatically evaluates the Bayesian evidence, allowing us to perform principled Bayesian model selection. TD-CARMA is parsimonious, and typically includes no more than a dozen unknown parameters. We apply TD-CARMA to three doubly lensed quasars HS 2209+1914, SDSS J1001+5027 and SDSS J1206+4332, estimating their time delays as $-21.96 \pm 1.448$ (6.6$\%$ precision), $120.93 \pm 1.015$ (0.8$\%$), and $111.51 \pm 1.452$ (1.3$\%$), respectively. A python package, TD-CARMA, is publicly available to implement the proposed method.


翻译:我们提出TD-CARMA,这是一种巴伊西亚方法,通过模拟观测到的和不定期抽样的光曲线来估计宇宙时间延迟,这是实现连续自动递增平均值(CARMA)的过程。我们关于心电图测量错误和微升的模型账户是来源光度中独立外向长期变异的另一个来源。CARMA的配方采用了直线状态空间代表,允许使用Kalman过滤器高效和可缩放的精确度计算。我们从联合的表面分布模型中获取样本,采用嵌套式取样方法。这可以“无孔”Bayesian Computation,以简单的方式处理预期的后方分布的多模式,不要求起始值的规格,也不要求对时间延迟进行初步猜测。与现有方法不同,拟议的取样程序自动评估Bayes-comal1, 通常允许我们采用SDMA的SDMA方法。

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
70+阅读 · 2022年6月28日
机器学习入门的经验与建议
专知会员服务
90+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
99+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员